

Geologie- und Umwelt-Beratung

Dipl.-Geol. Kuhfeld - GUB - Brechtener Straße 152 - 44536 Lünen

medl GmbH Burgstraße 1

45476 Mülheim an der Ruhr

Geologie – Hydrogeologie Geotechnische Umweltfragen Altlastenuntersuchung und Gefährdungsabschätzung Baugrunduntersuchung Abriss-/Entsorgungskonzepte

Ihr Zeichen / Ihre Bestell-Nr.:

Unser Zeichen

Datum

Auftrag vom 08.03.2017

P 0317017

17.05.2017

Bericht

zur Bodenerkundung und chemischer Analytik zum Bauvorhaben:

Kanalsanierung "Arndtstraße"

von der Engelbertusstraße bis zur Mellinghofer Straße

in Mülheim an der Ruhr

44536 Lünen Mobilfunk: 0177 - 7280308 BLZ 44050199 BIC: DORTDE33XXX

E-mail: gub.kuhfeld@arcor.de Kto.-Nr. 491007893

Inhaltsverzeichnis

		Seite
1	Auftrag und Problemstellung	3
2	Verwendete Unterlagen	4
3	Lage des Untersuchungsgebietes im Stadtgebiet von Mülheim	5
4	Untersuchungsprogramm	6
4.1	Geotechnische Felduntersuchungen	6
4.2	Chemische Laboruntersuchungen an Feststoffproben	7
5	Untersuchungsergebnisse	8
5.1	Geologie und Schichtenaufbau	8
5.1.1	Asphaltdecken, bzw. Pflastersteine, Tragschichten	9
5.1.2	Auffüllungen	9
5.1.3	Auenlehm (Quartär)	10
5.1.4.	Niederterrasse (Quartär)	10
5.2	Grundwasserverhältnisse	10
5.3	Organoleptische Auffälligkeiten	12
5.4	Bodenmechanische Klassifikation und Rechenwerte	12
5.4.1	Bodenklassen	12
5.4.2	Bodenmechanische Kennwerte	12
5.5	Chemische Analytik der Feststoffproben	13
6	Abschließende Bewertung der Untersuchungsergebnisse	17
6.1	Hinweise zur Bauausführung	17
6.2	Abfallrechtliche Beurteilung und Entsorgung	18
7	Schlussbemerkung	20

Anlagenverzeichnis

Anlage 1:	Lageplan der Untersuchungsstellen
mage i.	Lagopian dei Ontersachangssteher

Anlage 2: Bohrprofile

Anlage 3: Profilschnitt

Anlage 4: Chemische Untersuchungsberichte der SEWA GmbH

1 Auftrag und Problemstellung

Die medl - Mülheimer Entsorgungsdienstleistungs GmbH plant in der Arndtstraße, von der Engelbertusstraße bis zur Mellinghofer Straße und in der Cleveschen Straße von der Arndtstraße bis zum Stadtarchiv, den Neubau eines Kanals in offener Bauweise. Zwischen Stadtarchiv und Aktienstraße soll der bestehende Kanal mit einem Inliner saniert werden.

Der projektierte Kanal mit einer Gesamtlänge von 387,16 m beginnt im geplanten Schacht 6 in der Arndstraße vor Haus – Nummer 63. Er endet in Schacht 035 und schließt hier im Bereich der Kreuzung Engelbertusstraße / Arndtstraße an das in der Engelbertusstraße vorhanden Eiprofil an. Der Kanal in der Arndtstraße soll zwischen Mellinghofer und Clevescher Straße in Steinzeug DN 300 und von Clevescher Straße bis Engelbertusstraße in Steinzeug DN 400 ausgebaut werden.

Im geplanten Schacht 4 in der Arndtstraße Haus – Nummer 49 schließt der Kanal aus der Cleveschen Straße an. Dieser Kanalabschnitt soll in offener Bauweise bis zum neuen Schacht 8 geführt werden. Für den Anschluss an den Kanal in der Aktienstraße soll das vorhandene Eiprofil im Inlinerverfahren saniert werden. Der neue Kanal in der Cleveschen Straße wird in Steinzeug DN 300 ausgeführt. Die Kanalbaumaßnahme verläuft ausschließlich in den vorhandenen Kanaltrassen.

Die geplante Kanalsohlentiefe variiert von 2,83 m im östlichen Schacht 6 bis 4,07 m unter GOK im geplanten Schacht Nr. 8 in der Cleveschen Straße. Die geplante Rohrsohle liegt in etwa auf Höhe der vorhandenen. Die Hausanschlüsse werden übernommen.

Die Arndtstraße liegt im Bereich des Sanierungsgebietes "ehemalige Zinkhütte Eppinghofen". Für das gesamte Untersuchungsgebiet gelten daher die Vorgaben des gleichnamigen, für verbindlich erklärten Sanierungsplanes.

In Hinblick auf die anstehende Entsorgung des anfallenden Bodenmaterials im Zuge des Aushubs für die Kanalerneuerung wurden daher neben der bodenmechanischen Erkundung zusätzliche chemische Analysen des Bodens zur abfalltechnischen Einstufung erforderlich.

Mit dem vorliegenden Bericht wird lediglich die Bestimmung möglicher Gefahrstoffgehalte festgestellt. Die daraus resultierenden Maßnahmen für die Kanalbauarbeiten in Kontaminierten Bereichen werden in einem gesonderten Arbeitsschutzkonzept zu erarbeiten sein.

Die GUB - Geologie- und Umwelt-Beratung - Dipl.-Geol. Kuhfeld wurde mit Fax der medl GmbH vom 08.03.2017 gemäß dem Rahmen-Leistungsverzeichnis "Bodengutachten" mit der Durchführung von entsprechenden Bodenuntersuchungen im Bereich der Arndtstraße beauftragt.

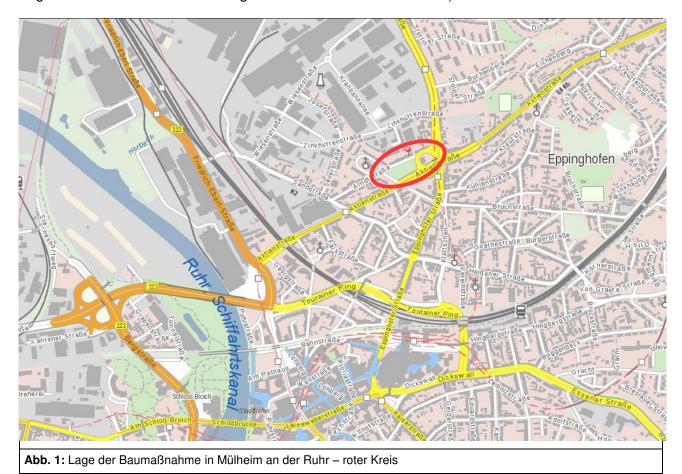
2 Verwendete Unterlagen

Vom Auftraggeber wurden folgende Unterlagen zur Verfügung gestellt:

Kanalsanierung Arndtstraße als DXF-Datei mit einem Lageplan – Ausführungsplanung Blatt-Nr.: S vom 03.04.2017 und einen Längsschnitt - Ausführungsplanung Blatt-Nr.: S vom 06.04.2017

Für die abschließende Darstellung und Bewertung der Untersuchungsergebnisse sind die nachfolgend aufgeführten geologischen Karten und die entsprechende Literatur als zusätzliche Unterlagen benutzt worden.

- **DIN 4023 (2006-02):** Geotechnische Erkundung und Untersuchung Zeichnerische Darstellung der Ergebnisse von Bohrungen und sonstigen direkten Aufschlüssen; Beuth Verlag, Berlin
- **DIN 4124 (2012-01):** Baugruben und Gräben Böschungen, Verbau, Arbeitsraumbreiten; Beuth Verlag, Berlin
- **DIN 18196 (2011-05):** Erd- und Grundbau Bodenklassifikation für bautechnische Zwecke, Beuth Verlag, Berlin
- **DIN 18300 (2016-09):** VOB Vergabe- und Vertragsordnung für Bauleistungen Teil C Allgemeine Technische Vertragsbedingungen für Bauleistungen (ATV) Erdarbeiten
- **DIN EN 1610 (2015-12):** Einbau und Prüfung von Abwasserleitungen und –kanälen
- **DIN EN ISO 14688-1 (2013-12):** Geotechnische Erkundung und Untersuchung Benennung, Beschreibung, und Klassifizierung von Boden Teil 1: Benennung und Beschreibung; Beuth Verlag, Berlin
- **EAKV (1996):** Verordnung zur Einführung des Europäischen Abfallkatalogs (EAK Verordnung EAKV 13. September 1996)
- **Gem.RdErl.** (09.10.2001) d. Ministeriums für Wirtschaft und Mittelstand, Energie und Verkehr VI A 3 32-40/45 und des Ministeriums für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz IV 3 953-26308 IV 8 1573-30052: Güteüberwachung von mineralischen Stoffen im Straßen- und Erdbau
- Geologische Karte mit Erläuterungen von Nordrhein-Westfalen (1986), M 1:25.000; 4507 Mülheim an der Ruhr; Geologisches Landesamt NRW, Krefeld 1986
- Ingenieurgeologische Karte mit Erläuterungen, M 1:25.000; **4507 Mülheim an der Ruhr**; Geologisches Landesamt NRW, Krefeld 1994
- **KrW-/AbfG (1994):** Gesetz zur Förderung der Kreislaufwirtschaft und Sicherung der umweltverträglichen Beseitigung von Abfällen (Kreislaufwirtschafts- und Abfallgesetz KrW-/AbfG 27. September 1994)
- **LAGA (1997/2004):** Mitteilungen 20 der Länderarbeitsgemeinschaft Abfall (LAGA): Anforderung an die stoffliche Verwertung von mineralischen Reststoffen/Abfällen Technische Regeln (TR-Bauschutt –> 1997, TR-Boden -> 1997 und TR-Boden -> 2004)
- Arbeitsblatt DWA-A 125 (2008-12): Rohrvortrieb und verwandte Verfahren


Arbeitsblatt DWA-A 139 (2010-01): Einbau und Prüfung von Abwasserleitungen und -kanälen **Arbeitsblatt DWA-A 161 (2014-03)**: Statische Berechnung von Vortriebsrohren

Technische Regeln für Gefahrstoffe TRGS 551: Teer und andere Pyrolyseprodukte aus organischem Material

ZTVE-StB (1994): Zusätzliche technische Vorschriften und Richtlinien für Erdarbeiten im Stra-Benbau

3 Lage des Untersuchungsgebietes im Stadtgebiet von Mülheim

Der zu erneuernde Kanalbereich liegt in Mülheim an der Ruhr im Stadtteil Eppinghofen (s. Abb. 1: Lage der Baumaßnahme im Stadtgebiet von Mülheim an der Ruhr).

Die zu untersuchende Kanaltrasse verläuft in der Arndtstraße von der östlich gelegenen Mellinghofer Straße bis zur westlich gelegenen Engelbertusstraße, bis zur südlich gelegenen Aktienstraße und hat eine Gesamtlänge von 387,16 m. Morphologisch weist die Gelände-/Straßenoberfläche eine Höhendifferenz von 4,38 m auf (Schacht 013 in der Aktienstraße mit einer De-

ckelhöhe von ca. 46,36 m NHN und Schacht 035 in der Engelbertusstraße mit einer Deckelhöhe von ca. 41,98 m NHN)

4 Untersuchungsprogramm

4.1 Geotechnische Felduntersuchungen

Zur Erkundung der Bodenverhältnisse und zur Gewinnung von Bodenmaterial sind im Bereich der geplanten Kanalerneuerung in der Arndtstraße die folgenden geotechnischen Untersuchungen durchgeführt worden:

16 Kernbohrungen: KB RKS 1 – 6, 8 – 9, 11 - 13 und DPM 1, 1a, 4, 8 und 9 vor der

Durchführung der Rammkern- und der mittelschweren Rammsondierungen sind die Asphaltdecken mittels Kernbohrungen aufgeschlossen worden. Insgesamt wurden 5,46 lfd. m Bohrkerne erstellt

13 Sondierbohrungen: RKS 1 - 13 im Straßenbereich mit Endteufen von 2 m bis max. 6 m.

Insgesamt liegen 70 lfd. m Erkundungsstrecke vor.

5 Rammsondierungen: DPM 1, 1a, 4, 8 und **9** als mittelschwere Rammsondierungen im

Straßenbereich bzw. Gehwegbereich (DPM 9) ca. 1 m neben den RKS mit Endteufen von 1,4 m bis 6 m, Insgesamt liegen 24,4 lfd. m

Erkundungsstrecke vor.

Für die Sondierbohrungen ist der Sondiertrupp der GEOfactum GmbH eingesetzt worden. Die Aufnahme der Bodenschichten und die organoleptische Ansprache wurden durch den vor Ort anwesenden Geologen vorgenommen. Die geotechnischen Felduntersuchungen zu den 16 Kernbohrungen, den 13 Bohrsondierungen und den 5 Rammsondierungen wurden am 29. und 31.03.2017 sowie am 03., 04. und 06.04.2017 ausgeführt.

Die Sondierungen RKS/DPM 1 - 9 liegen im Bereich des aufzunehmenden Kanalgrabens vor den geplanten Schächten 1 – 8.

Nach Auskunft des Amtes für Umweltschutz liegen im Bereich der Arndstraße massive Schwermetallbelastungen vor, so dass zusätzliche Sondierungen durchgeführt wurden um alle für die Baumaßnahme maßgeblichen Bodenbelastungen untersuchen zu können. Die RKS 10 – 13 liegen daher außerhalb der Kanaltrasse um die Zusammensetzung der "normal" anstehenden Böden/Auffüllungen zu überprüfen (s. **Anlage 1: Übersichtsplan der Untersuchungsstellen**).

Mit den durchgeführten Kernbohrungen und Rammkernsondierbohrungen sind insgesamt 15 Bohrkerne sowie 82 gestörte Bodenproben entnommen sowie 10 repräsentative Mischproben (MP 1 bis MP 8 und MP 4+5 sowie MP 6+7) erstellt worden. Zur Vermeidung entnahmebedingter

Verschleppungen von Kontaminationen wurde bei den Rammkernsondierungen, soweit es möglich war, nur der innere Teil des gewonnenen Bohrkerns beprobt.

Die einzelnen Aufschlussstellen der Sondierbohrungen sind lage- und durch Nivellement höhenmäßig vom Sondiertrupp vom 29.03. – 06.04.2017 eingemessen worden. Als Höhenanschluss diente die Höhe 44,71 m NHN des Schachtes Nr. 093 in der Arndstraße zur Kreuzung Clevesche Straße. Die Ansprache des gewonnenen Bohrgutes und die zeichnerische Darstellung in Bohrprofilen (Anlage 2: Bohrprofile) und in einem Profilschnitt (Anlage 3: Profilschnitt) erfolgte in Anlehnung an die DIN 4023 und DIN EN ISO 14688-1 (2013-12).

4.2 Chemische Laboruntersuchungen an Feststoffproben

Unter Berücksichtigung der geplanten Kanalbaumaßnahme und den organoleptischen Auffälligkeiten/anthropogenen Beimengungen sowie der Hinweise der unteren Bodenschutzbehörde auf die sehr hohen Schwermetallgehalte sind für die chemische Analytik entsprechende repräsentative Proben der vorgefundenen Materialien wie Asphalte, Tragschichten, Auffüllungen sowie die anstehenden Böden ausgewählt worden. Die Probenauswahl und die ausgewählten Untersuchungsparameter sind in der nachfolgenden Tabelle 1 zusammenfassend dargestellt worden. Die Analysen wurden von der SEWA GmbH in Essen ausgeführt.

Tabelle 1: Probenzusammenstellung und Analytikauswahl

Probenbezeichnung:	Untersuchungsparameter:
RKS 1/1 – Asphalt	PAK-EPA
RKS 2/1 – Asphalt	PAK-EPA
RKS 3/1 – Asphalt	PAK-EPA
RKS 3/3 – Asphalt	PAK-EPA
RKS 4/1 - 6/1 – Asphalt	PAK-EPA
RKS 8/1 – Asphalt	PAK-EPA
RKS 9/1 – Asphalt	PAK-EPA
RKS 13/1 – Asphalt	PAK-EPA
RKS 7 (2,5 – 3,5 m) Boden	Schwermetalle AbfKlärV zzgl. As, PAK-EPA
RKS 9 (3,2 – 4,2 m) Boden	Schwermetalle AbfKlärV zzgl. As, PAK-EPA
RKS 12 (0,34 - 1,5 m) Asche	Schwermetalle AbfKlärV zzgl. As, PAK-EPA
RKS 12 (2,5 - 3,3 m) Asche	Schwermetalle AbfKlärV zzgl. As, PAK-EPA
RKS 13 (0,6 - 1,8 m) Asche	Schwermetalle AbfKlärV zzgl. As, PAK-EPA
RKS 13 (1,8 - 3,0 m) Asche	Schwermetalle AbfKlärV zzgl. As, PAK-EPA
RKS 13 (3,0 - 4,0 m) Boden	Schwermetalle AbfKlärV zzgl. As, PAK-EPA

	<u> </u>
MP 1 – Schlacketragschicht	LAGA – Bauschutt (TR 1997)
RKS 1 (0,27 – 0,6 m), RKS 2 (0,2 – 0,43), RKS 3 (0,12 -0,28	
+ 0,32 - 0,4 m), RKS 4 (0,2 - 0,38 m), RKS 5 (0,15 - 0,45 m),	
RKS 6 (0,18 – 0,49 m), RKS 13 (0,33 – 0,6 m)	
MP 2 – Schlacketragschicht	LAGA – Bauschutt (TR 1997)
RKS 7 (0,14 – 1,0 m), RKS 8 (0,25 – 0,6 m), RKS 9 (0,21 – 0,7 m)	
MP 3 – (Asche)-Grabenverfüllung	LAGA – Bauschutt (TR 1997)
RKS 1 (0,6 - 5,0 m) viel Ziegel, Boden	
MP 4 – (Asche)-Grabenverfüllung	LAGA – Bauschutt (TR 1997)
RKS 2 (0,43 – 1,0 m), RKS 3 (0,4 – 2,2 m)	
MP 5 – (Asche)-Grabenverfüllung	LAGA – Bauschutt (TR 1997)
RKS 4 (0,38 – 3,6 m), RKS 5 (0,45 – 3,4 m), RKS 6 (0,49 – 2,7 m)	
MP 6 - (Asche)-Grabenverfüllung	LAGA – Bauschutt (TR 1997)
RKS 7 (1,0 – 2,5 m), RKS 8 (0,6 – 1,0 m)	
MP 7 - (Asche)-Grabenverfüllung	LAGA – Bauschutt (TR 1997)
RKS 9 (0,74 – 3,2 m) viel Lehm	
MP 8 – (Boden)-Grabenverfüllung	LAGA – Boden (TR 2004)
RKS 2 (1,0 – 4,0 m), RKS 3 (2,2 – 4,0 m), RKS 6 (2,7 – 3,7 m)	
Gesamtmischprobe MP 4 + 5	Zusatzparameter Deponieverordnung
RKS 2 (0,43 – 1,0 m), RKS 3 (0,4 – 2,2 m) RKS 4 (0,38 – 3,6 m), RKS 5 (0,45 – 3,4 m), RKS 6 (0,49 – 2,7 m)	
Gesamtmischprobe MP 6 + 7	Zusatzparameter Deponieverordnung
RKS 7(1,0 – 2,5 m), RKS 8(0,6 – 1,0 m), RKS 9(0,74 – 3,2 m)	

5 Untersuchungsergebnisse

5.1 Geologie und Schichtenaufbau

Nach Auswertung der geologischen und ingenieurgeologischen Karten von Mülheim sowie den Ergebnissen der Rammkernsondierungen kann der im Untersuchungsgebiet anstehende, oberflächennahe geologische Aufbau generell in 3 Horizonte gegliedert werden:

- Asphaltdecke, Tragschichten, Auffüllungen
- Auenlehm (Quartär)
- Kies der Niederterrasse ("Ls,ta / N,G Quartär)

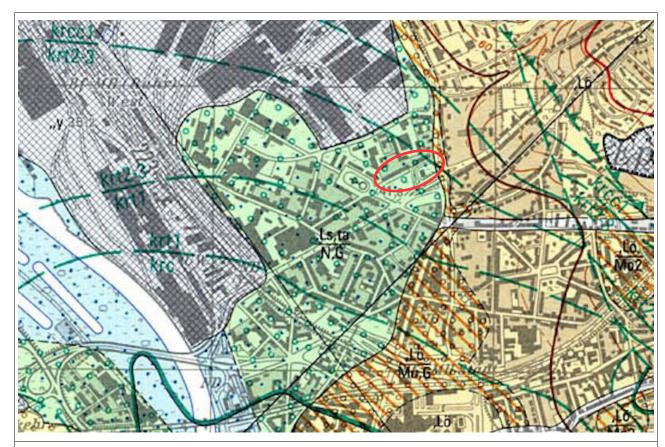


Abb. 2: Lage des Untersuchungsgebietes (roter Kreis) in der Geologischen Karte Blatt Mülheim

5.1.1 Asphaltdecken bzw. Pflasterstein, Tragschichten

Im Bereich der Kanaltrasse wurden mit den insgesamt 16 Kernbohrungen Asphaltdecken in Stärken von 3 cm bis 12 aufgeschlossen.

Unterhalb der Asphaltdecken (RKS 1 bis 6; 8-9; 11 - 13) bzw. den Pflastersteinen (RKS 7) auf Bettungssand stehen 7 bis 86 cm starke, graubraun, kiesig/steinige, z.T. hydraulisch gebundene Schlackentragschichten an (s. Anlage 2: Bohrprofile).

Die Tragschichten sind entsprechend den mit Rammsondierungen ermittelten Schlagzahlen dicht gelagert.

5.1.2 Auffüllungen

Unterhalb der o.g. Tragschichten befinden sich flächendeckend 2,5 m (RKS 9) bis 4,4 m (RKS 1) mächtige, grau-braune Auffüllungen. Lediglich in den Sondierungen RKS 8 und 11 betragen die Auffüllungsmächtigkeiten nur rund 1 m. Die Auffüllungen bestehen aus stark wechselnden Anteilen von Schlacke, Schlackegrus, Ziegelbruch, Betonbruch, Schamotte, Fein-Mittelkies, Sand und

Schluff. Meist überwiegen die anthropogenen Anteile wie Schlacke und Ziegelbruch. Zum Teil überwiegen aber auch die mineralischen Anteile wie Kies, Sand und Schluff. Die Auffüllung ist sehr inhomogen. Die Zusammensetzung der Auffüllung in den RKS 1- 9 (Grabenverfüllung) und in den RKS 10 – 13 (außerhalb der Kanalgräben) unterscheiden sich nicht systematisch. Die Auffüllungen waren zum Untersuchungszeitpunkt erdfeucht.

Analog zu der inhomogenen Zusammensetzung der Auffüllung ist auch die Lagerungsdichte sehr stark wechselnd. Zum größten Teil sind die Auffüllungen mit Schlagzahlen von 2 – 5 Schlägen in den Kanalgräben nur locker gelagert. Abschnittweise werden aber mehr als 20 Schläge für eine Eindringtiefe von 10 cm benötigt. Hier liegt eine mitteldichte bis dichte Lagerung vor.

5.1.3 Auenlehm (Quartär)

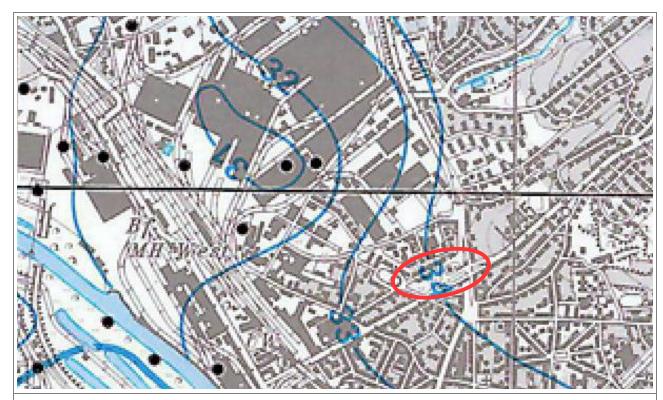
Außer im Bereich der Sondierungen RKS 1 und 2 liegt die geplante Grabensohle im Bereich der quartären Auenlehme. Es handelt sich um schwach feinsandige Schluffe. Sie sind braun gefärbt und waren zum Untersuchungszeitpunkt teilweise schwach klopfnass. Sie weisen insbesondere am Top nur eine weiche Konsistenz auf. Mit zunehmender Tiefe steigen die Schlagzahlen auf 6-10 Schläge an. Hier haben sie eine steife Konsistenz.

5.1.4 Niederterrasse (Quartär)

In den Sondierungen RKS 1, 2 und 4 steht im Liegenden der Auenlehme bzw. der Auffüllung die quartäre Niederterrasse der Ruhr an. Im Untersuchungsgebiet sind es braune, sandige Kiese. Die Mächtigkeit der Niederterrassensedimente ist in den Erläuterungen zur geologischen Karte mit 6 – 12 m angegeben.

Die Kiese der Niederterrasse sind dicht bis mitteldicht gelagert.

5.2 Grundwasserverhältnisse


In RKS 1 wurde im Bohrloch ein Wasserstand bei 38,23 mNHN eingemessen. In allen anderen Bohrungen konnten keine Hinweise auf Grundwasser bis zur Endteufe von 6 m unter GOK festgestellt werden.

Nach Auskunft der unteren Bodenschutzbehörde der Stadt Mülheim befindet sich in der Arndtstraße vor Hausnummer 49 die Grundwassermessstelle 769. Für diese Messstelle liegen seit 2000 ca. 35 Messungen vor. Der Wasserstand variiert demnach zwischen 33,90 und 34,10 m

NHN. Dies entspricht den Angaben in der ingenieurgeologischen Karte, in der auf Grundlage der hohen Grundwasserstände von 1967 Grundwassergleichen ableitet und für die Arndstraße Grundwasserstände von 33,00 und 34,00 m NHN ausweist.

Bei dem Grundwasserstand in der RKS 1 muss es sich daher um einen temporären Schichtenwasserstand bzw. um einen defekten Kanalabschnitt handeln. In den gut durchlässigen Kiesen der Niederterrasse sind sehr hohe Schwankungen nicht zu erwarten.

Abb. 3: hydrogeologische Karte aus der Ingenieurgeologischen Karte, Blatt Mülheim an der Ruhr Untersuchungsgebiet (roter Kreis); Grundwassergleichen Januar bis April 1967

Unter Berücksichtigung der vorhandenen Morphologie, den angetroffenen geologischen Verhältnisse und den umfangreichen Messdaten der Stadt Mülheim für das Untersuchungsgebiet ist davon auszugehen, dass die Grabensohle deutlich oberhalb des Grundwassers liegt. Dennoch kann nach anhaltenden Regenfällen zufließendes Schichtwasser aus den umliegenden Auenlehmen eine offene Wasserhaltung erforderlich machen um die Grabensohle trocken zu halten.

5.3 Organoleptische Auffälligkeiten

Organoleptische Auffälligkeiten (z.B. Geruch und/oder Verfärbung) sind vor Ort nur bei der RKS 1 (stark feucht, Fäkalgeruch) festgestellt worden.

5.4 Bodenmechanische Klassifikation und Rechenwerte

5.4.1 Bodenklassen

Die in der Arndtstraße mittels Kernbohrungen und Rammkernsondierungen aufgeschlossenen Bodenarten können in die folgenden Bodenklassen eingestuft werden (Tabelle 2).

Tabelle 2: Tabelle zur Bodenklassifikation gemäß DIN 18196, 18300 und 18319.

Bodenart	Bodenklassifizierung für bautechnische Zwecke (DIN 18 196)	Boden- und Felsklassen (DIN 18 300)	Bodenklassen für den Rohrvortrieb (DIN 18 319)
Tragschichten – Schlacke, dicht gelagert	GW, GI	3 - 6	LNW 2 - 3
** bei mehr als 30 Gew.% Steinen von über 63 mm Korn-Ø bis zu 0,01 m³ Rauminhalt		5**	
*** bei mehr als 30 Gew.% Steinen von über 0,01 m³ bis 0,1 m³ Rauminhalt		6***	
Auffüllung mit hohem Anteil von Fremdbestandsteilen wie Schlacke, Ziegelbruch, Bauschutt, locker bis dicht gelagert (lokal sehr inhomogen, daher größere Bandbreiten der Kennwerte möglich)	GW, GI, GU, SW, SI, SU,	3 - 4	LNW 1 - 3
Auenlehm, schwach feinsandig, weich bis steif	UL, UM	3 - 4	LBM 1 - 2
Niederterrasse Kies, sandig, mitteldicht bis dicht gelagert	GW, GI, GU, SW, SI, SU	4 - 5	LNW 2 – 3 S1, S3
** bei mehr als 30 Gew.% Steinen von über 63 mm Korn-Ø bis zu 0,01 m³ Rauminhalt		5**	

5.4.2 Bodenmechanische Kennwerte

Für die angetroffenen Bodenarten können für erdstatische Berechnungen auf Grundlage örtlicher Erfahrung im Mittel folgende Kennwerte angenommen werden. Sie sind gegebenenfalls durch bodenmechanische Versuche zu verifizieren. Die Angaben für den Steifemodul E_s entsprechen Erfahrungswerte und sind in dieser Größenordnung auch in der Ingenieurgeologischen Karte Blatt Mülheim enthalten.

Tabelle 3: Rechenwerte der Bodenkenngrößen gemäß DIN 1055

Bodenart	Wic	hte	Reibungs- winkel	Kohäsion	Steife- modul
	erdfeucht	unter Auftrieb	(Ersatz- reibungs- winkel)		
	γ	γ`	φ`	c´	Es
	kN/m³	kN/m³	Grad	kN/m²	MN/m³
Tragschichten – Schlacke, dicht gelagert	19 - 20	11 - 12	(35)	≈ 0	> 40
Auffüllung mit hohem Anteil von Fremdbestand- steilen wie Schlacke, Ziegelbruch, Bauschutt, locker bis dicht gelagert (lokal sehr inhomogen, daher größe- re Bandbreiten der Kennwerte möglich)	18 - 20	9 - 11	27,5 – 32,5	0	streut stark
Auenlehm, schwach feinsandig, weich bis steif	19	10	27,5	10	5 - 10
Niederterrasse Kies, sandig, mitteldicht bis dicht gelagert	19 - 21	10 - 11	32,5 - 35	0	40 - 80

5.5 Chemische Analytik der Feststoffproben

In den nachfolgenden Tabellen 4 und 5 sind die Ergebnisse der chemischen Analysen der Feststoffuntersuchungen in der Originalsubstanz bzw. im Königswasseraufschluss und im wässrigen DEV S4 – Eluat dargestellt. Zur Bewertung der Verwertungsmöglichkeiten im Sinne des KrW-/AbfG (1994) sind die Analysenergebnisse der Straßenbaumaterialien und der Auffüllungen den Zuordnungswerten für Feststoffe der Mitteilung 20 der Länderarbeitsgemeinschaft Abfall für Bauschutt (LAGA – M 20: TR Bauschutt 1997) und den Grenzwerten der RCL-Güteklassen (Gem.RdErl. 09.10.2001) gegenübergestellt.

Die Analysenergebnisse der Mischprobe **MP 8 – (Boden)-Grabenverfüllung** der geogen anstehenden Auenlehme (bzw. im Kanalgraben z.T. auch als umgelagerte Böden vorkommende Schluffe) werden in den Tabellen 6 und 7 den Zuordnungswerten für Feststoffe im Königswasseraufschluss und im wässrigen DEV S4 – Eluat der Mitteilung der Länderarbeitsgemeinschaft Abfall (LAGA – TR-Boden 2004) gegenübergestellt.

Auf eine tabellarische Darstellung der Asphaltproben wurde im Hinblick auf die einheitlichen Ergebnisse verzichtet. Die Einzelproben (**RKS 2/1, 3/1, 3/3, 4/1 – 6/1, 8/1, 9/1 und 13/1 Asphaltdecken**) der mittels Kernbohrungen aufgeschlossenen Asphaltdecken sind mit Stoffgehalten von 0 - 2 mg/kg für die Σ PAK-EPA als teerfrei einzustufen. Lediglich die Probe RKS 1/1 ist mit 16 mg/kg für die Σ PAK-EPA als schwach teerhaltig zu klassifizieren.

Auch wurde auf eine tabellarische Darstellung der Ergebnisse der chemischen Analysen der Einzelproben RKS 7 (2,5 – 3,5 m), RKS 9 (3,2 – 4,2 m), RKS 12 (0,34 – 1,5 m) und (2,5 – 3,3 m) RKS 13 (0,6 – 1,8 m) und RKS 13 (3,0 – 4,0 m) verzichtet, da diese Proben ausreichend durch die entsprechenden Mischproben MP 3 – 8 repräsentiert werden. Diese Proben wurden aus Bereichen außerhalb des Kanalgrabens gewonnen um zu überprüfen ob auch hier mit hohen Schwermetallgehalten gerechnet werden muss. Bis auf die Probe RKS 13 (3,0 – 4,0 m) des gewachsenen Bodens, die mit lediglich 850 mg/kg Zink in die Zuordnungsklasse Z 2 eingestuft werden kann, zeigen die übrigen Einzelproben auch die sehr hohen Schwermetallgehalte. Die Ergebnisse dieser Analysen sind im Einzelnen der Anlage 4 zu entnehmen.

Die Ergebnisse der Analytik der beiden Mischproben **MP 1 -** und **MP 2 - Schlacketragschicht** der Straßenbaumaterialien führen zu einer Einstufung in die RCL-Güteklasse <u>RCL I</u> bzw. in die LAGA – Einbauklasse <u>Z 2</u>. Die Analysenergebnisse der Auffüllungsprobe **MP 3 –(Asche)-Grabenverfüllung** aus dem Bereich der RKS 1 erlauben eine Einstufung in die RCL-Güteklasse <u>RCL I</u> bzw. in eine LAGA – Einbauklasse <u>Z 1.1.</u> Diese Materialien können einer Verwertung zugeführt werden.

In allen übrigen Mischproben der Auffüllungen, wie **MP 4, 5, 6 und 7 –(Asche)-Graben-verfüllung** überschreiten die ermittelten Schwermetallgehalte die Zuordnungswerte der LAGA - Einbauklasse <u>Z 2.</u> Das heißt, alle Auffüllungen die im Zuge der geplanten Kanalbaumaßnahme anfallen werden, können nicht mehr verwertet werden, sondern sind zu beseitigen.

Tabelle 4: Ergebnisse der chemischen Analysen in der Originalsubstanz bzw. im Königswasseraufschluss (DEV S 7). Alle Angaben in [mg/kg]

Parameter	MP 1	MP 2	MP 3	MP 4	MP 5	MP 6	MP 7	RCL I	RCL II	Z 1.1	Z 1.2	Z 2
Einstufung	RCL I / Z 2	RCL I / Z 2	RCL I / ≤ Z 1.1	> Z 2	> Z 2	> Z 2	> Z 2					
KW – Index	<50	<50	<50	<50	<50	<50	<50	k.A.	k.A.	300	500	1.000
EOX	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	3	5	1	3	10
Σ ΡΑΚ (ΕΡΑ)	0,90	0,68	1,00	0,053	4,0	0,018	0,24	15	75	5	15	75
Σ PCB (DIN)	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	k.A.	k.A.	0,05	0,15	0,5
Arsen	9,5	9,3	3,9	360	280	130	22	k.A.	k.A.	30 *	50 *	(150 *)
Blei	630	390	19	22.000	38.000	13.000	1.900	k.A.	k.A.	200 *	300 *	(1.000 *)
Cadmium	1,1	0,96	0,50	45	41	15	24	k.A.	k.A.	1 *	3 *	(10 *)
Chrom, ges.	19	10	10	14	14	12	19	k.A.	k.A.	100 *	200 *	(600 *)
Kupfer	23	19	8,2	470	1.300	570	92	k.A.	k.A.	100 *	200 *	(600 *)
Nickel	6,6	5,4	9,1	110	200	86	25	k.A.	k.A.	100 *	200 *	(600 *)
Quecksilber	<0,050	0,050	0,050	0,41	3,6	0,31	0,29	k.A.	k.A.	1 *	3 *	(10 *)
Zink	1.300	830	220	47.000	80.000	28.000	7.300	k.A.	k.A.	300 *	500 *	(1.500 *)

Die mit **Fettdruck** hinterlegten Felder kennzeichnen die Untersuchungsparameter, die aufgrund der nachgewiesenen Stoffgehalte zur entsprechenden LAGA – Einstufung führen, n.b. = nicht berechenbar, da alle Einzelstoffe kleiner der jeweiligen Bestimmungsgrenze (z.B. PCB-Isomere < 0,010 bzw. < 0,10 mg/kg), k.A. = keine Angaben, - - = nicht untersucht. Z-Werte * für Schwermetalle – sollen Recyclingbaustoffe, z.B. Vorabsiebmaterial und nicht aufbereiteter Bauschutt als Bodenmaterial für Rekultivierungszwecke und Geländeauffüllungen in der Einbauklasse 1 verwendet werden, ist die Untersuchung von Arsen und Schwermetallen erforderlich. Es gelten dann die Kriterien und Zuordnungswerte Z 1.1 und Z 1.2 der techn. Regeln Boden (TR-Boden 1997). (*) Zur Orientierung mit angegeben LAGA Z 2 – Werte der TR-Boden 199

Bei dem Erdaushub, der durch diese Proben repräsentiert wird, handelt es sich aufgrund der mit bis zu 38.000 mg/kg für Blei und bis zu 80.000 mg/kg für Zink sehr hohen Schwermetallgehalte um Abfall, der gefährliche Stoffe enthält. Diese hohen Schadstoffgehalte machen eine Reihe von Arbeitsschutzmaßnahmen sowie Maßnahmen zum Schutz der Anwohner erforderlich, die im Rahmen dieses Berichtes nicht dargestellt werden. Vor Beginn der Baumaßnahme ist unbedingt ein detailliertes Arbeitsschutzkonzept zu erarbeiten um einen gefahrlosen Umgang mit den Aushubmaterialien zu gewährleisten. Es wird empfohlen, dass Arbeitsschutzkonzept mit der Berufsgenossenschaft und mit der Stadt Mülheim, Amt für Umweltschutz, Untere Bodenschutzbehörde abzustimmen.

Für den Transport des Aushubmaterials als Abfall, der gefährliche Stoffe enthält, sind entsprechende Transportgenehmigungen erforderlich.

Tabelle 5: Ergebnisse der chemischen Analysen im wässrigen DEV S4 - Eluat. Bis auf elektr. Leitfähigkeit [μS/cm] und pH-Wert [Dimensionslos] alle Angaben in [mg/l]

Parameter	MP 1	MP 2	MP 3	MP 4	MP 5	MP 6	MP 7	RCL I	RCL II	Z 1.1	Z 1.2	Z 2
Einstufung	RCL II / Z 2	RCL I / Z 1.1	RCL I / Z1.1	> Z 2	RCL II / Z 1.2	RCL II /	> Z 2					
pH-Wert	9,61	10,6	8,04	9,27	8,68	7,88	8,70	7 – 12,5	7 – 12,5	7 – 12,5	7 – 12,5	7 – 12,5
El. Leitfähig- keit	810	370	110	120	330	500	50	2.000	3.000	1.500	2.500	3.000
Chlorid	3,6	3,6	2,0	7,7	3,1	6,6	5,3	40	150	20	40	150
Sulfat	360	63	12	25	110	210	14	150	600	150	300	600
Phenolindex	<0,0050	<0,0050	<0,0050	<0,0050	<0,0050	<0,0050	<0,0050	0,050	0,100	0,010	0,050	0,100
Arsen	<0,01	<0,01	<0,01	<0,01	<0,010	<0,010	<0,010	k.A.	k.A.	0,010	0,040	0,050
Blei	<0,0050	<0,0050	<0,0050	0,012	0,016	0,044	0,064	0,040	0,100	0,040	0,100	0,100
Cadmium	<0,0005	<0,0005	<0,0005	0,012	0,0034	0,0032	0,0079	0,005	0,005	0,002	0,005	0,005
Chrom - ges.	<0,0050	<0,0050	<0,0050	<0,0050	<0,0050	<0,0050	0,0056	0,030	0,050	0,030	0,075	0,100
Kupfer	<0,0050	<0,0050	<0,0050	<0,0050	<0,0050	<0,0050	0,012	0,100	0,200	0,050	0,150	0,200
Nickel	<0,0050	<0,0050	<0,0050	<0,0050	<0,0050	<0,0050	<0,0050	0,030	0,100	0,050	0,100	0,100
Quecksilber	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	<0,0002	k.A.	k.A.	0,0002	0,001	0,002
Zink	<0,010	0,013	<0,010	2,4	0,23	0,18	2,1	0,200	0,400	0,100	0,300	0,400

Die im wässrigen DEV S4-Eluat ermittelten Stoffgehalte der untersuchten Tragschichten-Mischprobe und der Auffüllungen sind ebenfalls auffällig und überschreiten zum Teil die RCL II bzw. die Z 2 Grenz- bzw. Zuordnungswerte (s. Tabelle 5).

Aufgrund der ermittelten Stoffgehalte (s. Tabellen 6 und 7) sind die untersuchten z.T. umgelagerten Böden (Grabenverfüllung) und auch die geogen anstehenden Bodenmaterialien in die LAGA Einbauklasse <u>Z 2</u> einzustufen und können einer entsprechenden Verwertung zugeführt werden.

Tabelle 6: Ergebnisse der chemischen Analysen in der Originalsubstanz bzw. im Königswasseraufschluss (DEV S 7). Bis auf TOC (%) alle Angaben in [mg/kg]

Parameter	MP 8	Z 0	Z 1	Z 2
	(Boden)-Grabenverfüllung			
Einstufung	Z 2			
KW - Index	< 50	100	600	2.000
KW (C 10 – C 22)	< 50	100	300	1.000
KW (C 22 – C 40)	< 50	k.A.	k.A.	k.A.
EOX	< 0,50	1	3	10
Σ PCB (DIN)	n.b.	0,05	0,15	0,5
Σ ΒΤΕΧ	n.b.	1	1	1
ΣLHKW	n.b.	1	1	1
Naphthalin	< 0,010	k.A.	k.A.	k.A.
Benzo(a)pyren	0,011	0,3 (0,6)	0,9	3
Σ ΡΑΚ (ΕΡΑ)	0,066	3	3 (9)	30
TOC	3,2	0,5	1,5	5
Cyanid, ges.	<0,50	/	3	10
Arsen	11	15	45	150
Blei	130	70	210	700
Cadmium	0,35	1	3	10
Chrom, ges.	30	60	180	600
Kupfer	12	40	120	400
Nickel	29	50	150	500
Quecksilber	< 0,050	0,5	1,5	5
Thallium	< 0,40	0,7	2,1	7
Zink	200	150	450	1.500

n.b. = nicht berechenbar, da alle Einzelstoffe kleiner der jeweiligen Bestimmungsgrenze (z.B. PCB-Isomere < 0,01 mg/kg), k.A. = keine Angaben

Tabelle 7: Ergebnisse der chemischen Analysen im wässrigen DEV S4 - Eluat. Bis auf elektr. Leitfähigkeit [μS/cm] und pH-Wert [Dimensionslos] alle Angaben in [mg/l]

Parameter	MP 8	Z 0	Z 1.1	Z 1.2	Z 2
	(Boden)-Grabenverfüllung				
Einstufung	Z 0				
pH-Wert	7,83	6,5 - 9,5	6,5 - 9,5	6 - 12	5,5 - 12
elektr. Leitfähigkeit	79	250	250	1.500	2.000
Chlorid	3,0	30	30	50	100
Sulfat	7,1	20	20	50	200
Cyanid (gesamt)	< 0,005	0,005	0,005	0,01	0,02
Phenolindex	< 0,005	0,02	0,02	0,04	0,1
Arsen	< 0,01	0,014	0,014	0,02	0,06
Blei	< 0,005	0,040	0,040	0,08	0,2
Cadmium	< 0,0005	0,0015	0,0015	0,003	0,006
Chrom - ges.	< 0,005	0,0125	0,0125	0,025	0,06
Kupfer	< 0,005	0,02	0,02	0,06	0,1
Nickel	< 0,005	0,015	0,015	0,02	0,07
Quecksilber	< 0,0002	< 0,0005	< 0,0005	0,001	0,002
Zink	0,11	0,15	0,15	0,2	0,6

Im Hinblick auf eine Beseitigung des anfallenden Erdaushubes wurden die Mischproben MP 4 und 5 sowie die Mischproben MP 6 und 7 aufgrund der vergleichbaren Material und chemischen Stoffgehalten zusammengefasst und auf die wichtigsten Parameter gemäß Deponieverordnung chemisch untersucht. Die Ergebnisse der chemischen Analysen die für eine Zuordnung des Erdaushubes in die Deponieklassen gemäß Deponieverordnung entscheidend sind werden in Tabelle 8 dargestellt und sind den Zuordnungswerten der Deponieklassen DK 0, DK I und DK II gegenübergestellt. Zum besseren Verständnis wurden die abfallrelevanten Ergebnisse der Eluatanalysen aus Tabelle 5 hinzugefügt.

Tabelle 8: Ergebnisse der chemischen Untersuchungen gemäß Deponieverordnung der Gesamtmischroben MP 4+5 sowie 6+7. Aus Tabelle 5 hinzugefügt wurden die Ergebnisse der Eluatanalysen der Auffüllungsproben MP 4 und MP 7, die für die Einstufung der Aushubmaterialien in die entsprechenden Deponieklassen relevant sind

Parameter	MP 4+5	MP 4	MP 6+7	MP 7	DK 0	DK I	DK II
Zuordnung	DK II	DK II	DK II	DK II			
AT4 [mg O²/g]	< 0,5		< 0,5		5 mg/g	5 mg/g	5 mg/g
TOC [Masse-%]	7,1		5,8		< 1	< 1	< 3
PB [mg/l]		0,012		0,064	0,05	0,2	1
Cd [mg/l]		0,012		0,0079	0.004	0,05	0,1
Zn [mg/l]		2,4		2,1	0,4	2	5

Insgesamt zeigen die Analysen der Bodenproben, dass der weitaus größte Teil des anfallenden Bodenaushubes der **Deponieklasse II** zuzuordnen und zu beseitigen ist. Teile des evtl. anfallenden Bodenaushubes des gewachsenen Bodens aus den Sondierungen RKS 1, 2, 3 und 13 unterschreiten die Zuordnungswerte **Z 2** und können entsprechend verwertet werden.

6 Abschließende Bewertung der Untersuchungsergebnisse

6.1 Hinweise zur Bauausführung

In Anbetracht der geplanten Tiefenlage, den oberflächennah anstehenden Böden und einer Reihe von Hausanschlüssen, die im Zuge des Kanalbaues übernommen werden müssen, ist eine offene Bauweise die kostengünstigste Variante. Insbesondere im Hinblick auf die hohen Schadstoffgehalte wird eine offene Bauweise erforderlich werden, um die Arbeitsschutzmaßnahmen gewährleisten zu können. Sollte dennoch eine geschlossene Bauweise gewünscht werden, können

die erforderlichen Bodenklassen gemäß DIN 18319 "Rohrvortriebsarten" der Tabelle 2 (Kap. 5.4.1) entnommen werden.

Des Weiteren sind hinsichtlich der Planung und Ausführung von Rohrvortrieben die Empfehlungen des Arbeitsblattes DWA-A 125 "Rohrvortrieb" zu beachten. Darüber hinaus wird auf die DWA-A 161 "statische Berechnung von Vortriebsrohren" hingewiesen.

Zur Herstellung des Kanalgrabens in offener Bauweise innerhalb der anstehenden Lockersedimente ist ein geeigneter Verbau erforderlich. Hierzu sind die Angaben der DIN 4124 zu berücksichtigen. Für die Bemessung des Verbaus können die entsprechenden Bodenkennwerte aus Kap. 5.4.2 (Tabelle 3) herangezogen werden.

Unter Berücksichtigung der in Kapitel 5.2 beschriebenen Grundwasserverhältnisse ist nicht davon auszugehen, dass die geplante Baumaßnahme im Einflussbereich eines einheitlich ausgebildeten Grundwasserkörpers liegt. Die Auffüllungen haben zum Teil sehr unterschiedliche Durchlässigkeiten. Dies kann dazu führen, dass sich Niederschlagswasser und möglicherweise lokal auftretendes Schichtenwasser in der meist undurchlässigen Grabensohle sammelt. Nach langanhaltenden Niederschlägen kann daher eine offene Wasserhaltung erforderlich werden um ein Aufweichen der Grabensohle zu verhindern.

Für die Verfüllung der Baugruben sind neben den Angaben der europäischen Norm EN 1610 die Angaben des Arbeitsblattes DWA-A 139 "Einbau und Prüfung von Abwasserleitungen und – kanälen" zu beachten.

Das entsprechend den Sondierergebnissen überwiegend anfallende, <u>hochbelastete Aushubmaterial</u> kann im Zuge der Baumaßnahme <u>nicht verwertet</u> werden.

Die Rammsondierungen zeigen, dass in der Grabensohle, insbesondere in RKS 4, teilweise nur sehr weiche Schluffe anstehen. Es kann also in Teilabschnitten erforderlich werden, die Grabensohle mit verdichtungsfähigem Material zu stabilisieren. Möglicherweise reichen Nachverdichtungen bereits aus.

6.2 Abfallrechtliche Beurteilung und Entsorgung

Aus den mittels Kernbohrung gewonnenen Asphalt- und Straßenoberbauproben und den mittels Rammkernsondierungen gewonnenen Auffüllungs-/Bodenproben sind entsprechend der vorgefundenen Materialzusammensetzung (Asphalt, Tragschichten, umgelagerte und anstehende Bodenmaterialien) insgesamt 25 repräsentative Misch-/Einzelproben für die chemische Analytik ausgewählt und dem chemischen Laboratorium der SEWA GmbH in Essen zur Analyse übergeben worden.

Aufgrund der ermittelten Stoffgehalte für die im Bereich des Kanalgrabens aufgeschlossenen Materialien werden folgende abfalltechnische Einstufungen vorgenommen:

- teerfreie Asphaltdecken

Die mittels Kernbohrungen aufgeschlossenen Asphaltdecken aus **RKS 2/1, 3/1, 3/3, 4/1 – 6/1, 8/1, 9/1** und **13/1** sind mit Stoffgehalten von 0 – 2 mg/kg für die Σ PAK-EPA als teerfrei einzustufen. Diese können mit dem Abfallschlüssel: <u>17 03 02 – Bitumengemische mit Ausnahme derjenigen, die unter 17 03 01 fallen,</u> einer Entsorgung zugeführt werden.

- schwach teerhaltige Asphaltdecken

Im Bohrkern aus **RKS 1** wurde für die Σ der PAK nach US-EPA ein Stoffgehalt von 16 mg/kg ermittelt. Es handelt sich um eine schwach teerhaltige Asphaltdecke der LAGA-Einbauklasse **Z 2**. Diese sind mit dem Abfallschlüssel: <u>17 03 02 – Bitumengemische mit Ausnahme derjenigen, die unter 17 03 01 fallen einer Entsorgung zu zuführen.</u>

- teerfreie Tragschichten

Die Schlacke-Tragschichten sind teerfrei und können den Vorgaben der LAGA - Mitteilungen (20) entsprechend, aufgrund von Bleigehalten von max. 630 mg/kg und Zinkgehalten von max. 1.300 mg/kg in die LAGA - Einbauklasse **Z 2** (TR-Bauschutt 1997) bzw. entsprechend dem Gem.RdErl. (09.10.2001) in die **RCL-Güteklasse I** eingestuft werden. Diese Materialien können separat oder auch zusammen mit der Asphaltdecke ausgebaut und z.B. über den Abfallschlüssel: <u>17 03 02 - Bitumengemische mit Ausnahme derjenigen, die unter 17 03 01 fallen</u> bzw. separat ausgebaut auch <u>170504 – Boden und Steine mit Ausnahme derjenigen, die unter 170503 fallen einer entsprechenden Entsorgung/Verwertung zugeführt werden.</u>

Für eine Verwertung der aufbereiteten, bituminösen bzw. teerfreien Asphaltdecken und Tragschichten im Zuge der Baumaßnahme wird eine Abstimmung mit der unteren Wasserbehörde erforderlich.

Auffüllungen

Die mit den Rammkernsondierungen aufgeschlossenen Auffüllungen aus Schluff und Sand mit anthropogenen Beimengungen wie Ziegelbruch Bauschutt und Schamott (MP (Asche)-Grabenverfüllung 4 - 7) überschreiten die Zuordnungswerte Z 2 (TR Bauschutt 1997) sowie die Grenzwerte der RCL-Güteklasse II und sind aufgrund der hohen Schwermetallgehalte gemäß

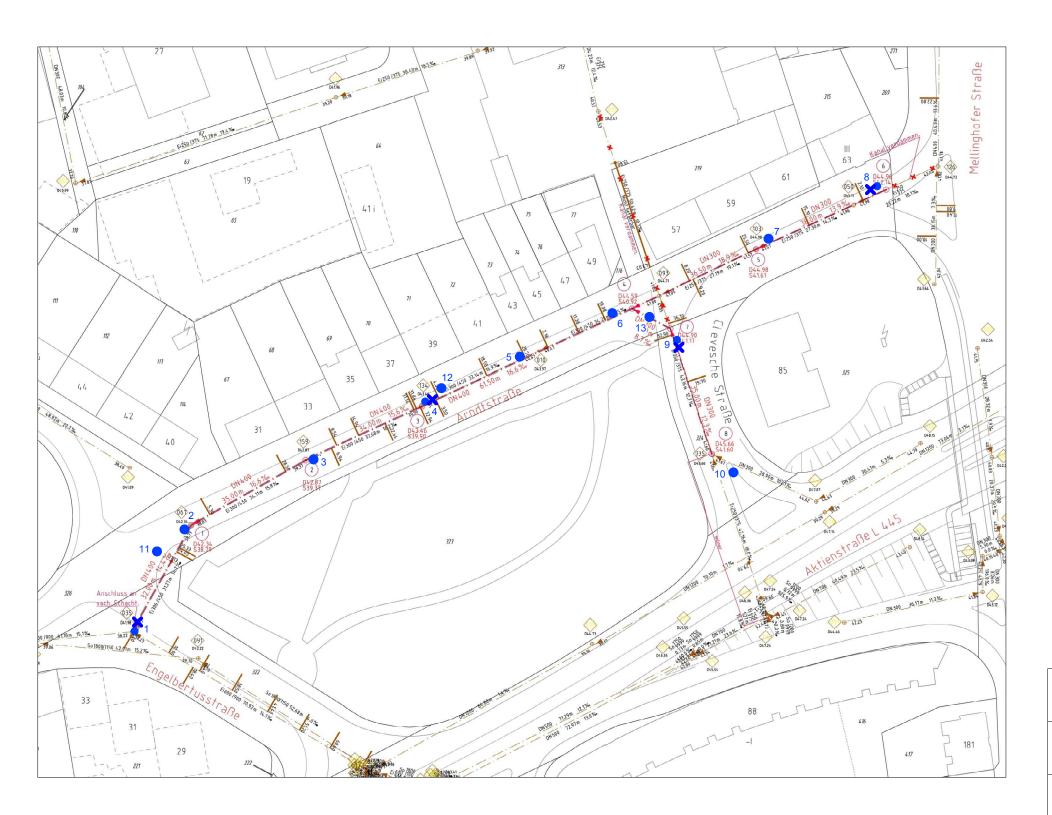
Deponieklasse II unter dem Abfallschlüssel <u>170503</u> einer entsprechenden Beseitigung zuzuführen.

Lediglich die Grabenverfüllung aus dem Bereich der RKS 1, repräsentiert durch die Probe **MP 3 –** (**Asche**)-**Grabenverfüllung** kann gemäß LAGA Zuordnungswert **Z 1.1** unter dem Abfallschlüssel 170504 – Boden und Steine mit Ausnahme derjenigen, die unter 170503 fallen entsorgt werden.

Da eine makroskopische Trennung der schwermetallhaltigen und –freien Grabenverfüllung nicht hinreichend genau durchführbar sein wird, wird empfohlen, die gesamte asche- und bauschutthaltige Grabenverfüllung (MP 3 – MP 7) und auch die seitlich des Kanalgrabens anstehende Auffüllung (s.a. Einzelproben RKS 11-13) wenn sie aufgenommen werden muss, einer entsprechenden deponietechnischen Beseitigung zuzuführen.

- Geogene Lockersedimente

Die vorgefundene, aus umgelagerten, organoleptisch unauffälligen Lockersedimenten bestehende alte Kanalgrabenverfüllung (Schluffe) und dementsprechend auch die organoleptisch unauffälligen, geogen anstehenden feinkörnigen Lockersedimente halten die Grenzwerte der LAGA - Einbauklasse <u>Z 2</u> (TR-Boden 2004) ein (**MP 8 – (Boden)-Grabenverfüllung**) und können somit entsprechenden Verwertungen zugeführt werden. Die Grabenverfüllung aus RKS 1


7 Schlussbemerkung

An dieser Stelle wird darauf hingewiesen, dass die Aussagen der vorliegenden gutachterlichen Stellungnahme zur Bodenerkundung im Bereich der Kanaltrasse sich ausdrücklich nur auf die untersuchten Proben beziehen können, bei der Interpolation zwischen den Untersuchungspunkten verbleiben gewisse Restrisiken, da bei einer punktförmigen Erkundung naturgemäß das Risiko kleinräumiger Veränderungen dazwischen nicht auszuschließen ist.

Lünen, 17.05.2017

Dipl.-Geologe Günter Kuhfeld

Lageplan der Untersuchungsstellen

Legende

- Lage der Rammkernsondierungen RKS 1 bis 13
- Lage der Rammsondierung DPM 1, 4, 8 und 9
- neue Schächte
- vorhandene Schächte

Auftraggeber

Burgstraße 1 45476 Mülheim an der Ruhr

Projektname:

Kanalsanierung Arndtstraße von der Engelbertusstraße bis zu Mellinghofer Straße in Mülheim

Bezeichnung:

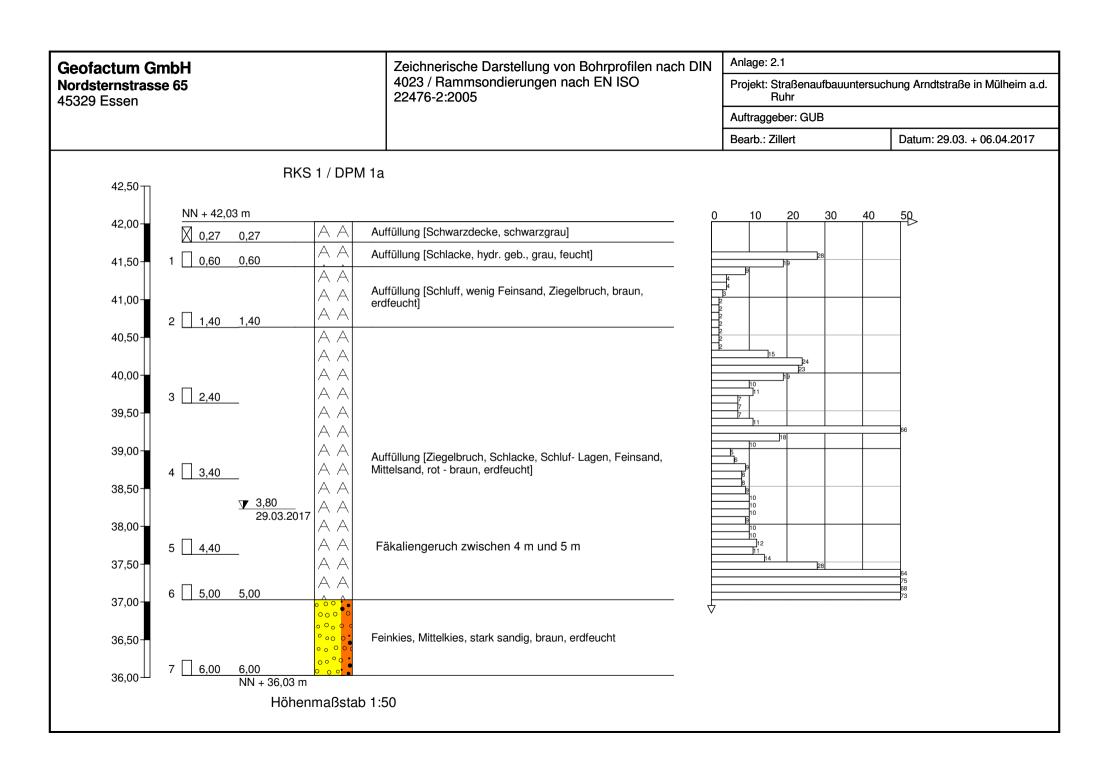
Lageplan der Untersuchungsstellen

Dipl.-Geologe Kuhfeld Geologie- und Umwelt-Beratung

Brechtener Str. 152 44356 Lünen

Tel.: 0231 - 7280308 Fax.: 0231 - 7280310

E-mail: gub.kuhfeld@arcor.de


Anlage: 1

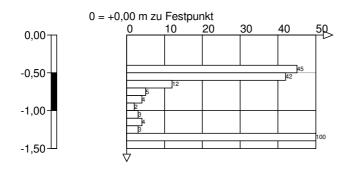
P 0317017

03.04.2017

ca. 1: 1.000

Bohrprofile

Geofactum GmbH Nordsternstrasse 65 45329 Essen Zeichnerische Darstellung von Bohrprofilen nach DIN 4023 / Rammsondierungen nach EN ISO 22476-2:2005 Anlage:


Projekt: Straßenaufbauuntersuchung Arndtstraße in Mülheim a.d.

Auftraggeber: GUB

Bearb.: Zillert

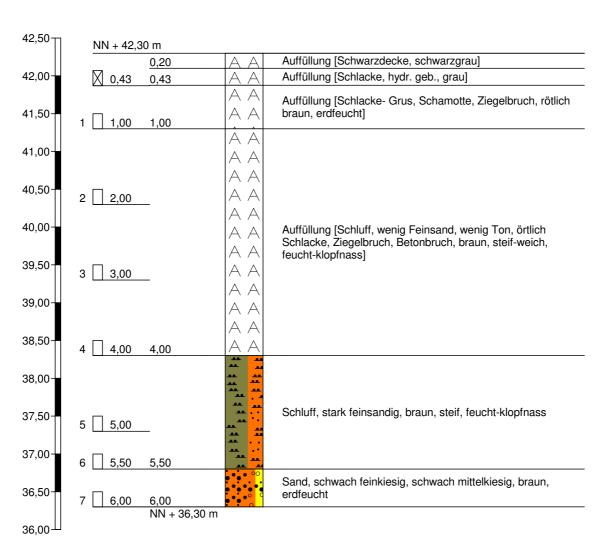
Datum: 06.04.2017

DPM 1

Höhenmaßstab 1:50

ab 1,4 m kein Rammfortschritt

Geofactum GmbH
Nordsternstrasse 65
45329 Essen


Zeichnerische Darstellung von Bohrprofilen nach DIN 4023 / Rammsondierungen nach EN ISO 22476-2:2005

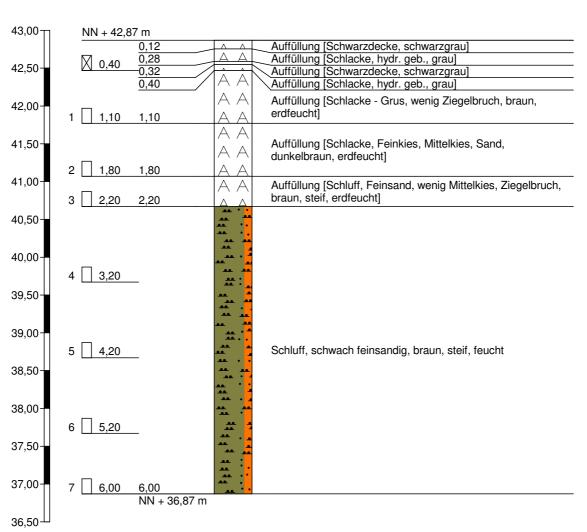
Anlage:
Projekt: Straßenaufbauuntersuchung Arndtstraße in Mülheim a.d. Ruhr
Auftraggeber: GUB

Datum: 03.04.2017

Bearb.: Zillert

RKS₂

Höhenmaßstab 1:50


Geofactum GmbH
Nordsternstrasse 65
45329 Essen

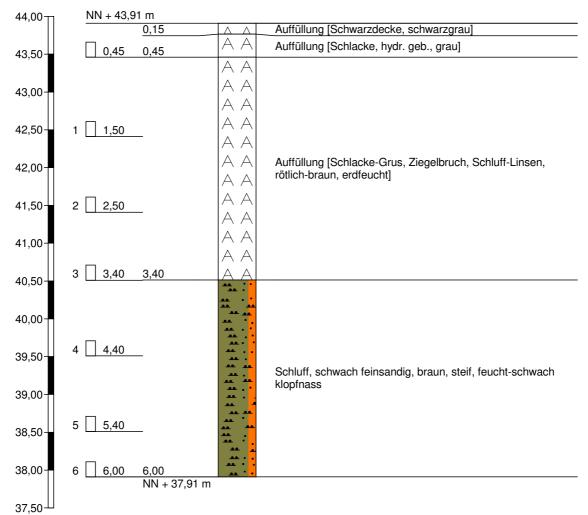
Zeichnerische Darstellung von Bohrprofilen nach DIN 4023 / Rammsondierungen nach EN ISO 22476-2:2005

Anlage:
Projekt: Straßenaufbauuntersuchung Arndtstraße in Mülheim a.d. Ruhr
Auftraggeber: GUB

Bearb.: Zillert

Datum: 29.03.2017

Höhenmaßstab 1:50


Geofactum GmbH Nordsternstrasse 65 45329 Essen				Zeichnerische Darstellung von Bohrprofilen nach DIN 4023 / Rammsondierungen nach EN ISO 22476-2:2005	Anla	Anlage:				
					Projekt: Straßenaufbauuntersuchung Arndtstraße in Mülheim a.d. Ruhr					
					Aufti	raggeb	er: GU	В		
						Bearb.: Zillert				Datum: 31.03.2017
		RI	KS 4 / DPM	4						
43,50 _T	NN + 43,4			A. ##illura (Calauramdaska, ashuramasa)) .	10	20	30	40	50
	0,38	0,20 0,38		Auffüllung [Schwarzdecke, schwarzgrau] Auffüllung [Schlacke, hydr. geb., grau]						
43,00	/ \ 0,00	3,00	AA				20 19 25			
42,50-	1 1,00		A A A A		9 7 4	14			-	
42,00				Auffüllung [Schlacke- Grus, Ziegelbruch, rötlich braun,	# # # # # # # # # # # # # # # # # # #					
12,00				erdfeucht]	_β 2 2					
41,50	2 2,00	_	AA	<u> </u>	<u>*</u> 4					_
41,00-					β 5 5					
	3 2,70	2,70	ÁÁ							
40,50	4 3,30	3,30	AA	Auffüllung [Schlacke-Grus, Sand, schwarzbraun, erdfeucht]	h 					
40,00	5 3,60	3,60	ÂÂ	Auffüllung [Schamotte, Ziegelbruch, talkiges Material, beige, erdfeucht]	2 1					
			** · ·							
39,50-			** · · ·		β 2 2					
39,00-	6 4,60		** · ·	Schluff, schwach feinsandig, braun, steif, feucht- schwach	_β 					
00.50			**************************************	klopfnass	5 7 6 8					
38,50			ee ee		7 9	10				
38,00	7	5,70	** **		9	12 12 12				
37,50-	8 6,00	6,00	Y 1	Fein- bis Mittelkies, sandig, braun, feucht		13 14 14				
·		NN + 37,49		∀	7					
37,00 ∐		Hone	enmaßstab	1:50						

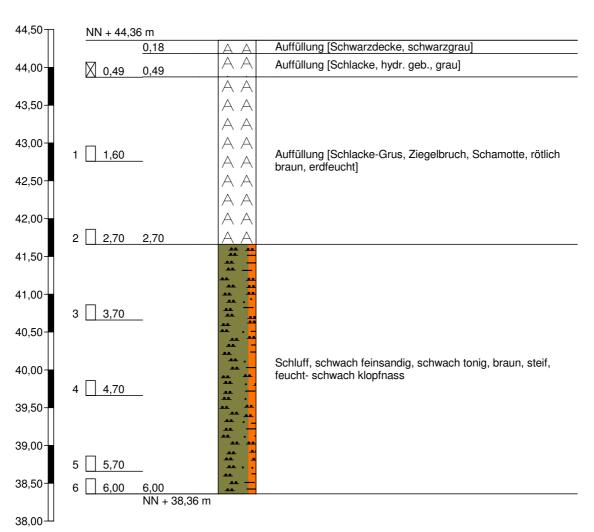
Geofactum GmbH
Nordsternstrasse 65
45329 Essen

Zeichnerische Darstellung von Bohrprofilen nach DIN 4023 / Rammsondierungen nach EN ISO 22476-2:2005 Anlage:
Projekt: Straßenaufbauuntersuchung
Arndtstraße in Mülheim a.d.

Bearb.: Zillert Datum: 31.03.2017

Auftraggeber: GUB

Höhenmaßstab 1:50

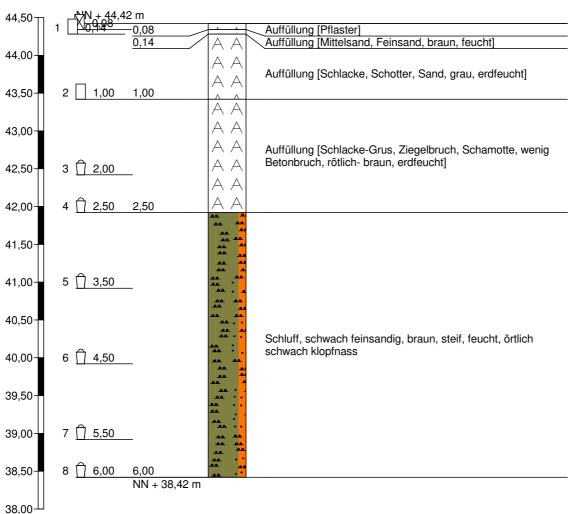

Geofactum GmbH
Nordsternstrasse 65
45329 Essen

Zeichnerische Darstellung von Bohrprofilen nach DIN 4023 / Rammsondierungen nach EN ISO 22476-2:2005

	Anlage:
	Projekt: Straßenaufbauuntersuchung Arndtstraße in Mülheim a.d. Ruhr
	Auftraggeber: GUB

Datum: 03.04.2017

Bearb.: Zillert


Höhenmaßstab 1:50

Geofactum GmbH Nordsternstrasse 65 45329 Essen Zeichnerische Darstellung von Bohrprofilen nach DIN 4023 / Rammsondierungen nach EN ISO 22476-2:2005 Anlage:

Projekt: Straßenaufbauuntersuchung
Arndtstraße in Mülheim a.d. Ruhr
Auftraggeber: GUB

Datum: 04.04.2017

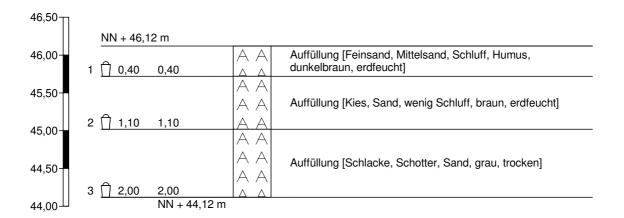
Bearb.: Zillert

Höhenmaßstab 1:50

Anlage: Zeichnerische Darstellung von Bohrprofilen nach DIN **Geofactum GmbH** 4023 / Rammsondierungen nach EN ISO Nordsternstrasse 65 Projekt: Straßenaufbauuntersuchung Arndtstraße in Mülheim a.d. 22476-2:2005 45329 Essen Auftraggeber: GUB Datum: 03.04.2017 Bearb.: Zillert RKS 8 / DPM 8 45,50-NN + 45.05 m 40 45.00 Auffüllung [Schwarzdecke, schwarzgrau] 0,25 -0,36 0 🛛 0,36 Auffüllung [Schlacke, ab 0,36m mit Feinkies, Mittelkies, Schluff, grau] Auffüllung [Schlacke, ab 0,36m mit Feinkies, Mittelkies, 0,60 0.60 44,50 Schluff, grau] 2 1,00 1,00 Auffüllung [Schlacke-Grus, Ziegelbruch, rötlich braun, 44,00 erdfeucht] 43,50 3 7 2.00 43,00-42,50 4 3,00 42,00 41,50 Schluff, schwach feinsandig, braun, steif, feucht 5 4.00 41,00 40,50 6 5.00 40,00 39,50 7 6,00 6,00 39,00 NN + 39,05 m

Anlage: **Geofactum GmbH** Zeichnerische Darstellung von Bohrprofilen nach DIN 4023 / Rammsondierungen nach EN ISO Nordsternstrasse 65 Projekt: Straßenaufbauuntersuchung Arndtstraße in Mülheim a.d. 22476-2:2005 45329 Essen Auftraggeber: GUB Bearb.: Zillert Datum: 04.04.2017 RKS 9 / DPM 9 $45,00 \pm$ NN + 44,62 m 10 20 40 0 0.21 Auffüllung [Schwarzdecke, schwarzgrau] 0,21 44,50 AA Auffüllung [Schlacke-Schotter, Sand, grau, erdfeucht] 1 0.70 0,70 44.00 AA АА 43,50 АА AA 2 1,70 43,00 Auffüllung [Schluff, Feinsand, Mittelsand, wenig Mittelkies, AA wenig Ziegelbruch, wenig Schamotte, wenig Schlacke-Grus, AA braun, steif, feucht] 42,50-АА 3 2,70 42.00 4 | 3,20 41,50-3,20 41.00 5 4,20 40.50 Schluff, schwach feinsandig, tonig, braun, steif, feucht, örtlich 40,00 schwach klopfnass 6 5,20 39,50 39.00 7 | 6,00 6,00 NN + 38.62 m 38,50

Geofactum GmbH
Nordsternstrasse 65
45329 Essen


Zeichnerische Darstellung von Bohrprofilen nach DIN 4023 / Rammsondierungen nach EN ISO 22476-2:2005

	Anlage:
	Projekt: Straßenaufbauuntersuchung Arndtstraße in Mülheim a.d. Ruhr
	Auftraggeber: GUB

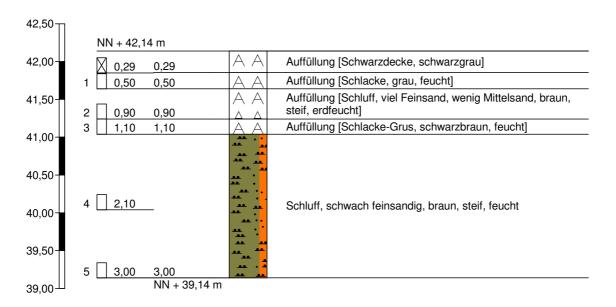
Datum: 04.04.2017

Bearb.: Zillert

RKS 10

Höhenmaßstab 1:50

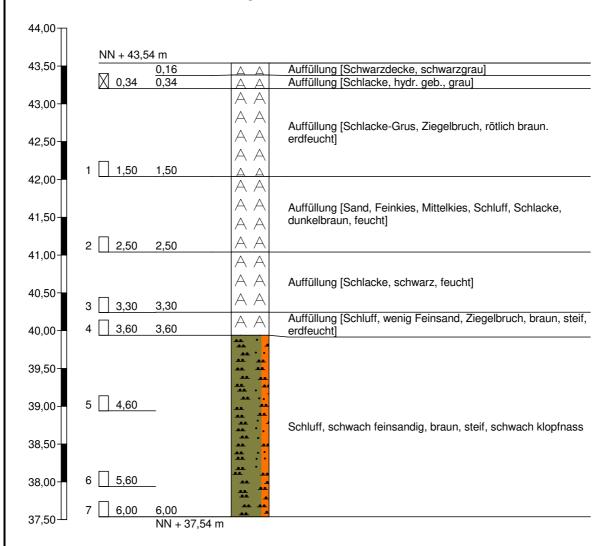
ab 2m kein Bohrfortschritt


Geofactum GmbH
Nordsternstrasse 65
45329 Essen

Zeichnerische Darstellung von Bohrprofilen nach DIN 4023 / Rammsondierungen nach EN ISO 22476-2:2005

Anlage:
Projekt: Straßenaufbauuntersuchung Arndtstraße in Mülheim a.d. Ruhr
Auftraggeber: GUB

Datum: 29.03.2017


Bearb.: Zillert

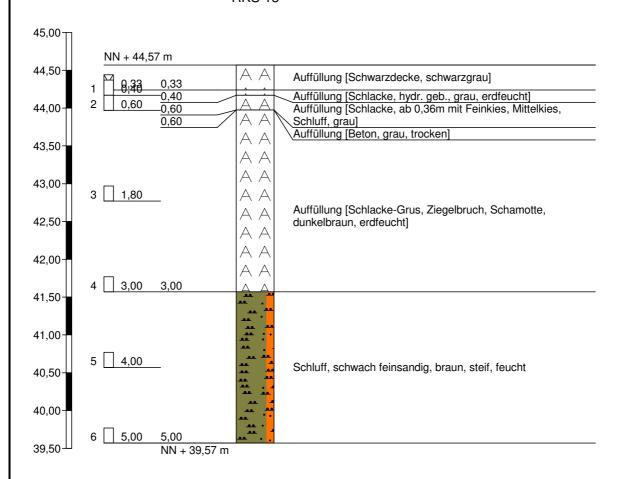
Höhenmaßstab 1:50

Geofactum GmbH	Zeichnerische Darstellung von	Anlage:			
Nordsternstrasse 65 45329 Essen	Bohrprofilen nach DIN 4023 / Rammsondierungen nach EN ISO 22476-2:2005	Projekt: Straßenaufbauuntersuchung Arndtstraße in Mülheim a.d.			
		Auftraggeber: GUB			
		Bearb.: Zillert	Datum: 31.03.2017		

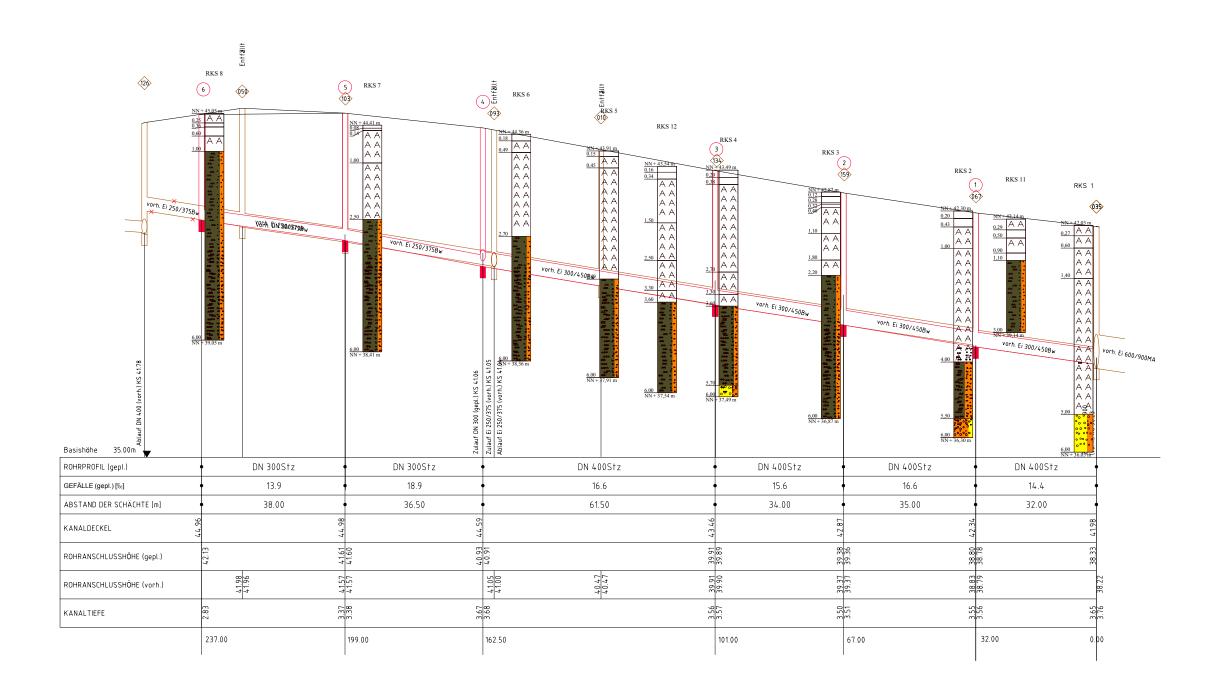
RKS 12

Höhenmaßstab 1:50

Geofactum GmbH Nordsternstrasse 65 45329 Essen Zeichnerische Darstellung von Bohrprofilen nach DIN 4023 / Rammsondierungen nach EN ISO 22476-2:2005 Anlage:


Projekt: Straßenaufbauuntersuchung Arndtstraße in Mülheim a.d.

Auftraggeber: GUB


Bearb.: Zillert

Datum: 31.03.2017

RKS 13

Höhenmaßstab 1:50

Legende

neue Schächte

vorhandene Schächte

Burgstraße 1 45476 Mülheim an der Ruhr

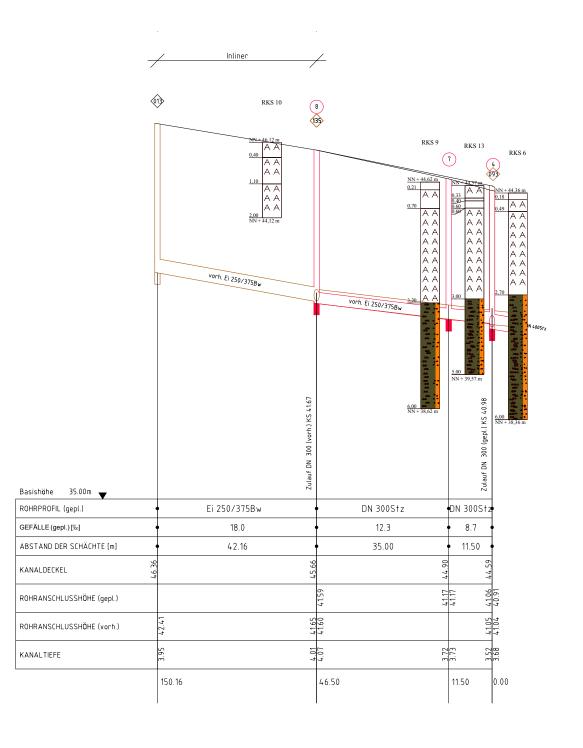
Kanalsanierung Arndstraße von der Engelbertusstraße bis zur Mellinghofer Straße in Mülheim

Profildarstellung: RKS 1 - RKS 8

Dipl.-Geologe Kuhfeld Geologie- und Umwelt-Beratung

Brechtener Str. 152 44356 Lünen

Tel.: 0231 - 7280308 Fax.: 0231 - 7280310


ca. 1:1.000/1:100 E-mail: gub.kuhfeld@arcor.de

Anlage: 3.1

P 0317017

06.04.2017

Profilschnitte

Legende

neue Schächte

vorhandene Schächte

Burgstraße 1 45476 Mülheim an der Ruhr

Kanalsanierung Arndstraße von der Engelbertusstraße bis zur Mellinghofer Straße in Mülheim

Profildarstellung

Dipl.-Geologe Kuhfeld Geologie- und Umwelt-Beratung

Brechtener Str. 152 44356 Lünen

Tel.: 0231 - 7280308

Fax.: 0231 - 7280310 E-mail: gub.kuhfeld@arcor.de

Projekt-Nr.: P 0317017

06.04.2017

ca. 1: 1.000 / 1: 100

Anlage: 3.2

Chemische Untersuchungsberichte der SEWA GmbH

Untersuchungsbericht

Untersuchungsstelle: SEWA GmbH

Laborbetriebsgesellschaft m.b.H

Lichtstr. 3 45127 Essen

Tel. (0201) 847363-0 Fax (0201) 847363-332

Berichtsnummer: AU58456
Berichtsdatum: 13.04.2017

Projekt: P0317017; Kanalsanierung Arndtstraße

Auftraggeber: GUB - Geologie- und Umweltberatung

Heuweg 60

44339 Dortmund

Auftrag: 10.04.2017

Probeneingang: 10.04.2017

Untersuchungszeitraum: 10.04.2017 — 13.04.2017

Probenahme durch: Auftraggeber/Gutachter

Untersuchungsgegenstand: 23 Feststoffproben

Andreas Görner

Andrews ferm

Laborleitung

Die Untersuchungen beziehen sich ausschließlich auf die eingegangenen Proben. Die auszugsweise Vervielfältigung des Untersuchungsberichtes ist ohne die schriftliche Genehmigung der SEWA GmbH nicht gestattet.

Labornummer	Ihre Probenbezeichnung	Probenentnahme			
58456 - 1	MP 1 Schlacketragschicht				
58456 - 2	MP 2 Schlacketragschicht				
58456 - 3	MP 3 (Asche-) Grabenverfüllung	MP 3 (Asche-) Grabenverfüllung			
58456 - 4	MP 4 (Asche-) Grabenverfüllung				
	58456 - 1	58456 - 2 58456 - 3			

• Untersuchungen im Königswasseraufschluß

Metalle					
Arsen	mg/kg	9,5	9,3	3,9	360
Blei	mg/kg	630	390	19	22000
Cadmium	mg/kg	1,1	0,96	0,50	45
Chrom	mg/kg	19	10	10	14
Kupfer	mg/kg	23	19	8,2	470
Nickel	mg/kg	6,6	5,4	9,1	110
Quecksilber	mg/kg	<0,050	<0,050	0,050	0,41
Zink	ma/ka	1300	830	220	47000

Labornummer	Ihre Probenbezeichnung	Probenentnahme
58456 - 1	MP 1 Schlacketragschicht	
58456 - 2	MP 2 Schlacketragschicht	
58456 - 3	MP 3 (Asche-) Grabenverfüllung	
58456 - 4	MP 4 (Asche-) Grabenverfüllung	

58456 - 1	58456 - 2	58456 - 3	58456 - 4

Untersuchungen im Feststoff

EOX	mg/kg	<0,50	<0,50	<0,50	<0,50
KW-Index	mg/kg	<50	<50	<50	<50
C10-C22	mg/kg	<50	<50	<50	<50
C22-C40	mg/kg	<50	<50	<50	<50
PAK nach US EPA					
Naphthalin	mg/kg	<0,010	<0,010	<0,010	<0,010
Acenaphthylen	mg/kg	<0,010	<0,010	<0,010	<0,010
Acenaphthen	mg/kg	<0,010	0,013	<0,010	<0,010
Fluoren	mg/kg	<0,010	<0,010	<0,010	<0,010
Phenanthren	mg/kg	0,059	0,064	0,12	<0,010
Anthracen	mg/kg	0,010	0,010	0,013	<0,010
Fluoranthen	mg/kg	0,13	0,11	0,18	0,014
Pyren	mg/kg	0,072	0,054	0,12	<0,010
Benzo(a)anthracen	mg/kg	0,083	0,044	0,089	<0,010
Chrysen	mg/kg	0,13	0,082	0,11	<0,010
Benzofluoranthene	mg/kg	0,20	0,15	0,18	0,027
Benzo(a)pyren	mg/kg	0,11	0,068	0,085	0,012
Dibenz(ah)anthracen	mg/kg	<0,010	<0,010	<0,010	<0,010
Benzo(ghi)perylen	mg/kg	0,051	0,043	0,052	<0,010
Indeno(123-cd)pyren	mg/kg	0,056	0,042	0,047	<0,010
Summe PAK n. US EPA	mg/kg	0,90	0,68	1,00	0,053
Summe PAK n.TrinkwV	mg/kg	0,31	0,24	0,28	0,027
PCB nach DIN					
PCB 28	mg/kg	<0,010	<0,010	<0,010	<0,010
PCB 52	mg/kg	<0,010	<0,010	<0,010	<0,010
PCB 101	mg/kg	<0,010	<0,010	<0,010	<0,010
PCB 138	mg/kg	<0,010	<0,010	<0,010	<0,010
PCB 153	mg/kg	<0,010	<0,010	<0,010	<0,010
PCB 180	mg/kg	<0,010	<0,010	<0,010	<0,010
Summe PCB n. DIN	mg/kg	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar
Summe PCB n. AltÖIV	mg/kg	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar

Labornummer	Ihre Probenbezeichnung	Probenentnahme
58456 - 1	MP 1 Schlacketragschicht	
58456 - 2	MP 2 Schlacketragschicht	
58456 - 3	MP 3 (Asche-) Grabenverfüllung	
58456 - 4	MP 4 (Asche-) Grabenverfüllung	
	58456 - 1 584	456 - 2 58456 - 3

Untersuchungen im Eluat

pH-Wert	ohne	9,61	10,6	8,04	9,27
Elektr. Leitfähigkeit	μS/cm	810	370	110	120
Chlorid	mg/l	3,6	3,6	2,0	7,7
Sulfat	mg/l	360	63	12	25
Phenolindex	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
Metalle					
Arsen	mg/l	<0,010	<0,010	<0,010	<0,010
Blei	mg/l	<0,0050	<0,0050	<0,0050	0,012
Cadmium	mg/l	<0,00050	<0,00050	<0,00050	0,012
Chrom	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
Kupfer	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
Nickel	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	<0,00020
Zink	mg/l	<0,010	0,013	<0,010	2,4

58456 - 8

Labornummer	Ihre Probenbezeichnung	Probenentnahme
58456 - 5	MP 5 (Asche-) Grabenverfüllung	
58456 - 6	MP 6 (Asche-) Grabenverfüllung	
58456 - 7	MP 7 (Asche-) Grabenverfüllung	
58456 - 8	MP 8 (Boden-) Grabenverfüllung	

Untersuchungen im Königswasseraufschluß

Metalle					
Arsen	mg/kg	280	130	22	11
Blei	mg/kg	38000	13000	1900	130
Cadmium	mg/kg	41	15	24	0,35
Chrom	mg/kg	14	12	19	30
Kupfer	mg/kg	1300	570	92	12
Nickel	mg/kg	200	86	25	29
Quecksilber	mg/kg	3,6	0,31	0,29	<0,050
Zink	mg/kg	80000	28000	7300	200

58456 - 5

58456 - 6

58456 - 7

• Untersuchungen im Salpetersäureaufschluß

Metalle

Thallium mg/kg <0,40

Labornummer	Ihre Probenbezeichnung		Probenentnahme	
58456 - 5	MP 5 (Asche-) Grabenverfüllung	MP 5 (Asche-) Grabenverfüllung		
58456 - 6	MP 6 (Asche-) Grabenverfüllung			
58456 - 7	MP 7 (Asche-) Grabenverfüllung	MP 7 (Asche-) Grabenverfüllung		
58456 - 8	MP 8 (Boden-) Grabenverfüllung	MP 8 (Boden-) Grabenverfüllung		
	58456 - 5	58456	- 6 58456 - 7	

• Untersuchungen im Feststoff

TOC	%				3,2
EOX	mg/kg	<0,50	<0,50	<0,50	<0,50
Cyanid (ges.)	mg/kg				<0,050
KW-Index	mg/kg	<50	<50	<50	<50
C10-C22	mg/kg	<50	<50	<50	<50
C22-C40	mg/kg	<50	<50	<50	<50
LHKW					
Dichlormethan	mg/kg				<0,025
trans-1,2-Dichlorethen	mg/kg				<0,025
cis-1,2-Dichlorethen	mg/kg				<0,025
Trichlormethan	mg/kg				<0,025
1,1,1-Trichlorethan	mg/kg				<0,025
Tetrachlormethan	mg/kg				<0,025
Trichlorethen	mg/kg				<0,025
1,1,2-Trichlorethan	mg/kg				<0,025
Tetrachlorethen	mg/kg				<0,025
Chlorbenzol	mg/kg				<0,025
1,1,1,2-Tetrachlorethan	mg/kg				<0,025
Summe LHKW	mg/kg				n. berechenbar
BTEX					
Benzol	mg/kg				<0,025
Toluol	mg/kg				<0,025
Ethylbenzol	mg/kg				<0,025
m/p-Xylol	mg/kg				<0,025
o-Xylol	mg/kg				<0,025
Summe BTEX	mg/kg				n. berechenbar

Labornummer	Ihre Probenbezeichnung	Probenentnahme
58456 - 5	MP 5 (Asche-) Grabenverfüllung	
58456 - 6	MP 6 (Asche-) Grabenverfüllung	
58456 - 7	MP 7 (Asche-) Grabenverfüllung	
58456 - 8	MP 8 (Boden-) Grabenverfüllung	

58456 - 8	MP 8 (Boden-) Gra	benverfüllung			
		58456 - 5	58456 - 6	58456 - 7	58456 - 8
PAK nach US EPA					
Naphthalin	mg/kg	<0,010	<0,010	<0,10	<0,010
Acenaphthylen	mg/kg	<0,010	<0,010	<0,10	<0,010
Acenaphthen	mg/kg	<0,010	<0,010	<0,10	<0,010
Fluoren	mg/kg	<0,010	<0,010	<0,10	<0,010
Phenanthren	mg/kg	0,21	<0,010	<0,10	<0,010
Anthracen	mg/kg	0,030	<0,010	<0,10	<0,010
Fluoranthen	mg/kg	1,0	<0,010	<0,10	0,022
Pyren	mg/kg	0,68	<0,010	<0,10	<0,010
Benzo(a)anthracen	mg/kg	0,33	<0,010	<0,10	<0,010
Chrysen	mg/kg	0,44	<0,010	<0,10	<0,010
Benzofluoranthene	mg/kg	0,78	0,018	0,24	0,033
Benzo(a)pyren	mg/kg	0,32	<0,010	<0,10	0,011
Dibenz(ah)anthracen	mg/kg	<0,010	<0,010	<0,10	<0,010
Benzo(ghi)perylen	mg/kg	0,098	<0,010	<0,10	<0,010
Indeno(123-cd)pyren	mg/kg	0,12	<0,010	<0,10	<0,010
Summe PAK n. US EPA	mg/kg	4,0	0,018	0,24	0,066
Summe PAK n.TrinkwV	mg/kg	1,00	0,018	0,24	0,033
PCB nach DIN					
PCB 28	mg/kg	<0,010	<0,010	<0,10	<0,010
PCB 52	mg/kg	<0,010	<0,010	<0,10	<0,010
PCB 101	mg/kg	<0,010	<0,010	<0,10	<0,010
PCB 138	mg/kg	<0,010	<0,010	<0,10	<0,010
PCB 153	mg/kg	<0,010	<0,010	<0,10	<0,010
PCB 180	mg/kg	<0,010	<0,010	<0,10	<0,010
Summe PCB n. DIN	mg/kg	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar
Summe PCB n. AltÖIV	mg/kg	n. berechenbar	n. berechenbar	n. berechenbar	n. berechenbar

58456 - 8

58456 - 7

Labornummer	Ihre Probenbezeichnung	Probenentnahme
58456 - 5	MP 5 (Asche-) Grabenverfüllung	
58456 - 6	MP 6 (Asche-) Grabenverfüllung	
58456 - 7	MP 7 (Asche-) Grabenverfüllung	
58456 - 8	MP 8 (Boden-) Grabenverfüllung	

Untersuchungen im Eluat

pH-Wert	ohne	8,68	7,88	8,70	7,83
Elektr. Leitfähigkeit	μS/cm	330	500	50	79
Chlorid	mg/l	3,1	6,6	5,3	3,0
Sulfat	mg/l	110	210	14	7,1
Cyanid (ges.)	mg/l				<0,0050
Phenolindex	mg/l	<0,0050	<0,0050	<0,0050	
Phenolindex (w.f.)	mg/l				<0,0050
Metalle					
Arsen	mg/l	<0,010	<0,010	<0,010	<0,010
Blei	mg/l	0,016	0,044	0,064	<0,0050
Cadmium	mg/l	0,0034	0,0032	0,0079	<0,00050
Chrom	mg/l	<0,0050	<0,0050	0,0056	<0,0050
Kupfer	mg/l	<0,0050	<0,0050	0,012	<0,0050
Nickel	mg/l	<0,0050	<0,0050	<0,0050	<0,0050
Quecksilber	mg/l	<0,00020	<0,00020	<0,00020	<0,00020
Zink	mg/l	0,23	0,18	2,1	0,11

58456 - 5

58456 - 6

Labornummer	Ihre Probenbezeichnung	Teufe	Probenentnahme
58456 - 9	RKS 7 Boden	2.50-3.50 m	
58456 - 10	RKS 9 Boden	3.20-4.20 m	
58456 - 11	RKS 12 Asche	0.34-1.50 m	
58456 - 12	RKS 12 Asche	2.50-3.30 m	
	58456 - 9	58456 - 10 58456	5 - 11 58456 - 12

Untersuchungen im Königswasseraufschluß

Motallo

Metalle					
Arsen	mg/kg	6,7	6,8	180	25
Blei	mg/kg	110	110	24000	5000
Cadmium	mg/kg	10	10	39	26
Chrom	mg/kg	18	19	17	16
Kupfer	mg/kg	22	19	650	180
Nickel	mg/kg	17	16	140	50
Quecksilber	mg/kg	0,52	0,62	0,30	0,76
Zink	mg/kg	3600	3000	53000	15000
Untersuchungen im Feststoff					
PAK nach US EPA					
Naphthalin	mg/kg	<0,010	<0,010	<0,010	<0,40
Acenaphthylen	mg/kg	<0,010	<0,010	<0,010	<0,40
Acenaphthen	mg/kg	<0,010	<0,010	<0,010	<0,40
Fluoren	mg/kg	<0,010	<0,010	<0,010	<0,40
Phenanthren	mg/kg	0,021	0,046	<0,010	<0,40
Anthracen	mg/kg	<0,010	<0,010	<0,010	<0,40
Fluoranthen	mg/kg	0,015	0,077	0,011	<0,40
Pyren	mg/kg	<0,010	0,044	<0,010	<0,40
Benzo(a)anthracen	mg/kg	0,016	0,030	<0,010	<0,40
Chrysen	mg/kg	0,013	0,055	<0,010	<0,40
Benzofluoranthene	mg/kg	0,031	0,082	0,021	<0,40
Benzo(a)pyren	mg/kg	0,010	0,044	<0,010	<0,40
Dibenz(ah)anthracen	mg/kg	<0,010	<0,010	<0,010	<0,40
Benzo(ghi)perylen	mg/kg	<0,010	0,029	<0,010	<0,40
Indeno(123-cd)pyren	mg/kg	<0,010	0,029	<0,010	<0,40
Summe PAK n. US EPA	mg/kg	0,11	0,44	0,032	n. berechenbar
Summe PAK n.TrinkwV	mg/kg	0,031	0,14	0,021	n. berechenbar

Labornummer	Ihre Probenbezeichnung	Teufe	Probenentnahme
58456 - 13	RKS 13 Asche	0.60-1.80 m	
58456 - 14	RKS 13 Asche	1.80-3.00 m	
58456 - 15	RKS 13 Boden	3.00-4.00 m	
58456 - 16	RKS 1/1 Asphalt		
	58456 - 13	58456 - 14 584	156 - 15 58456 - 16

Untersuchungen im Königswasseraufschluß

Metalle				
Arsen	mg/kg	140	210	4,0
Blei	mg/kg	24000	50000	32
Cadmium	mg/kg	18	87	3,2
Chrom	mg/kg	14	13	19
Kupfer	mg/kg	550	1100	8,3
Nickel	mg/kg	210	160	13
Quecksilber	mg/kg	0,26	0,42	<0,050
Zink	mg/kg	62000	89000	850

Untersuchungen im Feststoff

PAK nach US EPA

Naphthalin	mg/kg	<0,010	<0,010	<0,010	<0,30
Acenaphthylen	mg/kg	<0,010	<0,010	<0,010	<0,30
Acenaphthen	mg/kg	<0,010	<0,010	<0,010	<0,30
Fluoren	mg/kg	<0,010	<0,010	<0,010	<0,30
Phenanthren	mg/kg	0,016	0,021	<0,010	4,3
Anthracen	mg/kg	<0,010	<0,010	<0,010	0,30
Fluoranthen	mg/kg	0,021	0,015	<0,010	4,0
Pyren	mg/kg	0,010	<0,010	<0,010	1,9
Benzo(a)anthracen	mg/kg	<0,010	<0,010	<0,010	1,2
Chrysen	mg/kg	<0,010	<0,010	<0,010	1,5
Benzofluoranthene	mg/kg	0,023	<0,010	<0,010	1,4
Benzo(a)pyren	mg/kg	0,010	<0,010	<0,010	0,60
Dibenz(ah)anthracen	mg/kg	<0,010	<0,010	<0,010	<0,30
Benzo(ghi)perylen	mg/kg	<0,010	<0,010	<0,010	0,30
Indeno(123-cd)pyren	mg/kg	<0,010	<0,010	<0,010	0,33
Summe PAK n. US EPA	mg/kg	0,080	0,036	n. berechenbar	16
Summe PAK n.TrinkwV	mg/kg	0,023	n. berechenbar	n. berechenbar	2,0

Labornummer	Ihre Probenbezeichnung	Probenentnahme
58456 - 17	RKS 2/1 Asphalt	
58456 - 18	RKS 3/1 Asphalt	
58456 - 19	RKS 3/3 Asphalt	
58456 - 20	RKS 4/1-6/1 Asphalt	

58456 - 17	58456 - 18	58456 - 19	58456 - 20

Untersuchungen im Feststoff

• Ontersuchungen im resision	ı				
PAK nach US EPA					
Naphthalin	mg/kg	<0,30	<0,30	<0,30	<0,30
Acenaphthylen	mg/kg	<0,30	<0,30	<0,30	<0,30
Acenaphthen	mg/kg	<0,30	<0,30	<0,30	<0,30
Fluoren	mg/kg	<0,30	<0,30	<0,30	<0,30
Phenanthren	mg/kg	<0,30	<0,30	<0,30	<0,30
Anthracen	mg/kg	<0,30	<0,30	<0,30	<0,30
Fluoranthen	mg/kg	0,63	<0,30	<0,30	<0,30
Pyren	mg/kg	0,36	<0,30	<0,30	<0,30
Benzo(a)anthracen	mg/kg	<0,30	<0,30	<0,30	<0,30
Chrysen	mg/kg	0,36	<0,30	<0,30	<0,30
Benzofluoranthene	mg/kg	0,81	0,48	<0,30	<0,30
Benzo(a)pyren	mg/kg	<0,30	<0,30	<0,30	<0,30
Dibenz(ah)anthracen	mg/kg	<0,30	<0,30	<0,30	<0,30
Benzo(ghi)perylen	mg/kg	<0,30	<0,30	<0,30	<0,30
Indeno(123-cd)pyren	mg/kg	<0,30	<0,30	<0,30	<0,30
Summe PAK n. US EPA	mg/kg	2,2	0,48	n. berechenbar	n. berechenbar
Summe PAK n.TrinkwV	mg/kg	0,81	0,48	n. berechenbar	n. berechenbar

Labornummer	Ihre Probenbezeichnung	Probenentnahme
58456 - 21	RKS 8/1 Asphalt	
58456 - 22	RKS 9/1 Asphalt	
58456 - 23	RKS 13/1 Asphalt	

58456 - 21	58456 - 22	58456 - 23
20.20 =1		

Untersuchungen im Feststoff

PAK nach US EPA				
Naphthalin	mg/kg	<0,30	<0,30	<0,30
Acenaphthylen	mg/kg	<0,30	<0,30	<0,30
Acenaphthen	mg/kg	<0,30	<0,30	<0,30
Fluoren	mg/kg	<0,30	<0,30	<0,30
Phenanthren	mg/kg	<0,30	<0,30	<0,30
Anthracen	mg/kg	<0,30	<0,30	<0,30
Fluoranthen	mg/kg	<0,30	<0,30	<0,30
Pyren	mg/kg	<0,30	<0,30	<0,30
Benzo(a)anthracen	mg/kg	<0,30	<0,30	<0,30
Chrysen	mg/kg	<0,30	<0,30	<0,30
Benzofluoranthene	mg/kg	<0,30	<0,30	<0,30
Benzo(a)pyren	mg/kg	<0,30	<0,30	<0,30
Dibenz(ah)anthracen	mg/kg	<0,30	<0,30	<0,30
Benzo(ghi)perylen	mg/kg	<0,30	<0,30	<0,30
Indeno(123-cd)pyren	mg/kg	<0,30	<0,30	<0,30
Summe PAK n. US EPA	mg/kg	n. berechenbar	n. berechenbar	n. berechenbar
Summe PAK n.TrinkwV	mg/kg	n. berechenbar	n. berechenbar	n. berechenbar

Untersuchungsmethoden

Untersuchungen im Königswasseraufschluß

DIN EN 13657 Aufschluß Arsen DIN EN ISO 11885 **DIN EN ISO 11885** Blei **DIN EN ISO 11885** Cadmium Chrom DIN EN ISO 11885 Kupfer **DIN EN ISO 11885** Nickel DIN EN ISO 11885 Quecksilber **DIN EN ISO 12846** Zink **DIN EN ISO 11885**

Untersuchungen im Salpetersäureaufschluß

Aufschluß VDI 3796-1

Thallium VDI 3796-1

Untersuchungen im Feststoff

Cyanid (ges.) E DIN ISO 11262
EOX DIN 38414 S17
KW-Index DIN EN 14039
TOC DIN EN 13137

LHKW DIN ISO 22155

BTEX DIN ISO 22155

PAK nach US EPA DIN ISO 18287

PCB nach DIN DIN EN 15308

Untersuchungen im Eluat

Chlorid DIN EN ISO 10304-1
Cyanid (ges.) DIN 38405 D7
DEV S4 Eluat DIN EN 12457
Elektr. Leitfähigkeit DIN EN 27888

Phenolindex DIN EN ISO 14402 H37
Phenolindex (w.f.) DIN EN ISO 14402 H37
Sulfat DIN EN ISO 10304-1
pH-Wert DIN EN ISO 10523

Arsen **DIN EN ISO 11885** Blei DIN EN ISO 11885 Cadmium DIN EN ISO 11885 Chrom **DIN EN ISO 11885** Kupfer **DIN EN ISO 11885** Nickel **DIN EN ISO 11885** Quecksilber **DIN EN ISO 12846** Zink **DIN EN ISO 11885**

Untersuchungsbericht

Untersuchungsstelle: SEWA GmbH

Laborbetriebsgesellschaft m.b.H

Lichtstr. 3 45127 Essen

Tel. (0201) 847363-0 Fax (0201) 847363-332

Berichtsnummer: AU58638
Berichtsdatum: 11.05.2017

Projekt: P0317017; Kanalsanierung Arndtstraße. NU 58456

Auftraggeber: GUB - Geologie- und Umweltberatung

Heuweg 60

44339 Dortmund

Auftrag: 02.05.2017

Probeneingang: 10.04.2017

Untersuchungszeitraum: 10.04.2017 — 11.05.2017

Probenahme durch: Auftraggeber/Gutachter

Untersuchungsgegenstand: 2 Feststoffproben

Andreas Görner

Andrews ferm

Laborleitung

Die Untersuchungen beziehen sich ausschließlich auf die eingegangenen Proben. Die auszugsweise Vervielfältigung des Untersuchungsberichtes ist ohne die schriftliche Genehmigung der SEWA GmbH nicht gestattet.

Labornummer	Ihre Probenbezeichnung	Probenentnahme
58638 - 1	Gesamtmischprobe MP 4+5	
58638 - 2	Gesamtmischprobe MP 6+7	

• Untersuchungen im Feststoff

Atmungsaktivität AT4	mgO2/g	<0,50	<0,50
Glührückstand	%	91,9	91,1
Glühverlust	%	8,1	8,9
TOC	%	7,1	5,8
Schwerfl. liph. Stoffe	%	<0,050	0,069
Brennwert	MJ/kg	2,6	1,7

Untersuchungen in der Originalsubstanz

• Untersuchungen im Eluat

Gesamtgehalt an gelösten Feststoffen

	_		
Fluorid	mg/l	1,1	0,66
Cyanid (I.f.)	mg/l	<0,0050	<0,0050
DOC	mg/l	<1,0	<1,0
Metalle			
Antimon	mg/l	<0,0050	<0,0050
Barium	mg/l	0,20	0,12
Molybdän	mg/l	<0,0050	<0,0050
Selen	mg/l	<0,0050	<0,0050

mg/l

60

240

Untersuchungsmethoden

Untersuchungen im Feststoff

Atmungsaktivität AT4 AbfAblv Anhang 2 Nr. 5 (Sapromat) (n. akkr.)

Brennwert DIN 51900
Glührückstand DIN EN 15169
Glühverlust DIN EN 15169
Schwerfl. liph. Stoffe LAGA KW/04
TOC DIN EN 13137

Untersuchungen in der Originalsubstanz

Säureneutralisationskapa LAGA EW 98

Untersuchungen im Eluat

Cyanid (l.f.) DIN 38405 D13
DOC DIN EN 1484
Fluorid DIN 38405 D4
Gesamtgehalt an gelöster DIN 38409 H1-2

Antimon DIN EN ISO 11885
Barium DIN EN ISO 11885
Molybdän DIN EN ISO 11885
Selen DIN EN ISO 11885